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Internal Validity

o Before delving into instrumental variables (1V), let's take a step back
to other things that can go wrong with internal validity

e We will find out that IVs solve a lot of these problems

@ A taxonomy of what can go wrong:
© Omitted Variable Bias: Z such that ox, 7,00,z #0

@ Solution: Control variables (including fixed effects), RCTs,
quasi-experimental methods

@ Specification Bias: The relationship is not linear in X
o Solution: Try logs, polynomials, interactions, etc.

© Sample selection Bias: Unrepresentative sample

@ Measurement error bias

© Simultaneity bias: Y and X cause each other

o We have discussed (1) at length, solved (2), now let’s discuss (3)-(5)



Sample Selection Bias

Sample Selection Bias

Definition and Examples

e Sample Selection Bias occurs when the sample under consideration
is not selected randomly from the population under consideration

@ Education and Income example:
e Only working people have an income
e So estimated effect of education on income is only the effect on already
employed persons
o If education = a higher probability of working, then total effect should
take into account this probability

@ This is a subtle bias (related to external validity in some ways)
o If sample selection makes E(U|X) # 0 then OLS is biased
o If sample selection makes 3 only consistent for a subpopulation, then
interpretation changes



Sample Selection Bias

Sample Selection Bias
Solutions (Brief)

@ Sample Selection Bias occurs when sample under consideration is
not selected randomly from population under consideration

@ This is not selection bias

o Selection bias was about who is assigned treatment versus control
e Sample selection is about whether data is missing for some group

@ Solutions:
o Typically hard to deal with
o Either get more data from the full population...
o ... or model the selection issue (hard to do)



Measurement Error

Measurement Error (Errors-in-Variables) Bias

Problem: X variable is measured with noise

@ Mathematically:

TRUTH:Y =30+ 51X+ U
DATA:Y = o + 51 X* + U*

where X* is a noisy measure of X

@ Examples:

o Recording errors in data entry

o Recollection errors in survey data (these are frequent)
e Rounding errors

e Hard to measure variables

@ Note: we can also have measurement error in Y. Turns out
measurement error in Y does not cause any bias (though it does add
noise to U, increasing Var(51)).



Measurement Error

Visualizing Measurement Error: Self-Reported Australian
Incomes

Survey question: What is your income in thousands?
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@ The lumps occur at 5s and Os
@ E.g., people making 41k might say “40" or “45" instead of 41



Measurement Error

Measurement Error in X
The Math of Measurement Error

@ Classic measurement error: some random noise, v;, is added to X;:

e Formally, v; is independent of X; and u;
e Note: If u; and X; are correlated this is very complicated

Yi =Po + L1.X( + ui
Yi =Po + B1(Xi + vi) + u;
=Po + 1 Xi+  Prvi+ u
——

“New" Error Term

@ We will see that this will "attenuate” Bl toward zero



Measurement Error

Classical Measurement Error Math

Suppose that we do not observe X;, but rather X/, where X" = X; 4+ v;

and v; ~ N(0,02) and is independent of X; and u;. Find the bias when
you run the OLS regression:

Yi = Bo+ B X + u;



Workspace



Measurement Error

Measurement Error in X

e We found that:
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Attenuation

@ Estimated coefficient converges to the truth times an attenuation
term

o Attenuation term is less than 1 = pushes coefficient towards zero
o It does not make the term more negative—it squeezes the coefficient
and preserves the sign
e This “attenuates” the effect of X on Y. Hence the name: attenuation
bias



Measurement Error

Measurement Error in X

Classical Measurement Error Intuition

@ Why does measurement error attenuate the estimated effect of X on
Y?
o Noise in measured X makes it more likely to see high X and low X
with some Y because of randomness
o Extreme example: fix X and keep adding noise—eventually X* will
look like noise itself

@ Notice the following rearranging of the attenuation term:
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0% /a2 is called the signal-to-noise ratio

Larger signal to noise ratio = smaller bias

What matter is the relative variance of X to v

If 02 is small relative to % then attenuation bias isn’t too large



Measurement Error

Visualizing Measurement Error

Plotof X and Y

@ Suppose this is the true data. But...

Data



Measurement Error

Visualizing Measurement Error

Plot of X and Y/

Data
o Noisy
o e

@ ... you only observe the noisy data...



Measurement Error

Visualizing Measurement Error

Plotof X and Y

Data
— Noisy

— e
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@ ... then the estimated slope is flatter



Simultaneity Bias

@ Suppose we want to estimate the demand elasticity for butter:

/n(leutter) _ ,30 + ,Blln(P,-bUtter) + u;

@ 1 here is price elasticity of butter

e e.g., percent change in quantity for a 1% change in price (recall log-log
specification)

@ The above OLS regression will suffer from simultaneous causality bias



Simultaneity/Reverse Causality

Simultaneity Bias Continued

@ Simultaneity bas arises because price and quantity are determined
jointly

@ Remember ECO 100:
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(a) Demand and supply in three time periods



Simultaneity/Reverse Causality

Visualizing Simultaneity Bias

@ So your data will end up looking like this:

Price

Quantity
(b) Equilibrium price and quantity for 11

time periods

@ You will effectively get a slope of zero in this regression



Simultaneity/Reverse Causality

Visualizing Simultaneity Bias

@ But if only supply shifted you would get the correct slope:

Price

Quantity
(¢) Equilibrium price and quantity when only

the supply curve shifts

@ We thus needs something that only shifts supply (or demand) to solve
this problem



Simultaneity/Reverse Causality

Reverse Causality/Simultaneity Bias

Reverse causality and simultaneity bias are similar ideas

Simultaneity: X and Y are determined at the same time

@ Reverse causality: Y causes X
e Simple solution: Change your Y and X variable!

@ Bigger problem: reverse causality is usually a sign of simultaneity bias

o Example: More police causes lowers crime, but more crime also causes
higher police presence

o Besides trivial case where you mixed up your X and Y/, reverse
causality and simultaneity are usually the same thing



The Miracle Worker!

@ Instrumental Variables have the ability to solve:
@ Simultaneity bias (this is what they were originally used for)
@ Measurement error
© Omitted variable bias
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Instrumental Variables Introduction

@ Three quasi-experimental designs:

@ Difference-in-Differences
@ Instrumental Variables
© Regression Discontinuity

@ Instrumental variables are the most wide-ranging of our
quasi-experimental designs, in that they can solve:

@ Simultaneity bias (this is what they were originally used for)
@ Measurement error
© Omitted variable bias

© We will mostly discuss how we use them to eliminate omitted variable
bias



Basic Idea

@ Basic Idea of Instrumental Variable (IV):

e What if we have a variable that is correlated with X but not with Y
e Then any changes in Y caused by that variable will reflect causal
changes by X

@ Equation of interest:
Yi = Bo+ B1Xi + Ui
@ Vs break X into two pieces that are themselves uncorrelated:
Xi=Z+ Vi
o A piece that is not correlated with U (Cov(Z, U) = 0)

o A piece that is correlated with U (Cov(V/, U) # 0)
o Finally, Cov(Z,V)=0

@ Z; is an instrumental variable



Terminology Review

A “Good" Regression:

Exogenous

(cWalo)

N~

Endogenous

@ Exogenous Variables: Variables in the data that do not cause each other

e U is always exogenous, so exogenous also just means variables not
correlated with U

@ Endogenous Variables: Variables that are determined by exogenous
variables in the model

e Uis always in Y so Y is always endogenous



Omitted Variable Bias with Pictures

Selection/OVB:

[ Exogenous j
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Endogenous

@ In this picture X is endogenous because U now causes X as well

@ What if there is another exogenous variable that does not directly cause Y?



Omitted Variable Bias with Pictures

Instrumental Variable:

Exogenous

LoTe
@"' @

Endogenous

@ Z causes Y only indirectly through X

@ We can estimate “causal effect” of Z on Y and this MUST be the causal
effect of Z on X and the causal effect of X on Y

o Mathematically we need to split effect of on Z on Y into effect of Z
on X and X on Y



Formal Definition of an Instrumental Variable

Model:
Yi = Bo + b1 Xi + U;

@ We call a variable Z a a valid instrumental variable if the following
two conditions hold:

© Relevance: Cov(X,Z) #0

e An arrow from Z to X in the pictures

@ Exogeneity: Cov(U,Z) =0

e No arrow from Z to Y or Z to U in the picture



Key Assumption #1 of Instrumental Variables

e Relevance: Cov(X,Z)#0
@ This assumption just means that X and Z are correlated

@ We observe both X and Z, so can easily test this assumption by
regressing:

Xi = Bo+ b1Zi + u;

@ If 51 # 0 in regression, we say instrument is relevant



Key Assumptions #2 of Instrumental Variables

e Exogeneity: Cov(U,Z) =0
@ This assumption means that Z and U cannot be correlated

@ We do not observe U, so we cannot test this assumption

@ In general, we need to “defend” this assumption by telling a story
about why Z and U are unlikely to be correlated
e Discuss this a lot later, but basically want to say that Z randomly
assigns different X to individual



Best Defense of Exogeneity IV Assumption: Randomized
Experiment

@ Back to our Project STAR class size example:

score; = B + P1CSi + u;

@ where:

o score;j: Test score of student f
o CS;: Class size of student i

@ Suppose that we use a coin flip that sends kids that get a “head” to a
small class and kids getting a “tails” to big class

o This is our randomized experiment!

@ Let's call the coin flip our instrument Z (where Z; = 1 if heads,
Z; = 0 if tails)



Best Defense of Exogeneity IV Assumption: Randomized
Experiment

score; = g + B1CS; + u;

@ Is Z (our coin flip) a good instrument?

e Relevance: Cov(CS,Z) # 0? Yes, if Z; =1 kid gets small class, if
Z; = 0 kid gets big class
e So the regression CS; = §y + $1Z; + u; will estimate that 81 <0

e Exogeneity: Cov(U, Z) # 07 Untestable — so need “storytime”

e Story: Exogeneity holds because coin flip is random and does not
depend on any student or parent characteristics that would affect test
scores. Therefore, there is nothing related to Z (besides X) that is also
related to test scores, so U and Z must be uncorrelated



Randomized Experiment as an IV

score; = g + £1CS;i + u;

@ So a randomized experiment can be treated as an IV
o Big difference: can test randomized experiment somewhat by checking

balance of covariates, while Vs often cannot be tested
e For that reason, usually differentiate between IVs and randomized

experiments

o Later we will see different Zs. Good way to form your “story” of
whether they are good: think of whether they are “mimicking” a

randomized experiment
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