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Intro

Internal Validity

Before delving into instrumental variables (IV), let’s take a step back
to other things that can go wrong with internal validity

We will find out that IVs solve a lot of these problems

A taxonomy of what can go wrong:
1 Omitted Variable Bias: Z such that σX ,Z , σU,Z 6= 0

Solution: Control variables (including fixed effects), RCTs,
quasi-experimental methods

2 Specification Bias: The relationship is not linear in X
Solution: Try logs, polynomials, interactions, etc.

3 Sample selection Bias: Unrepresentative sample
4 Measurement error bias
5 Simultaneity bias: Y and X cause each other

We have discussed (1) at length, solved (2), now let’s discuss (3)-(5)



Sample Selection Bias

Sample Selection Bias
Definition and Examples

Sample Selection Bias occurs when the sample under consideration
is not selected randomly from the population under consideration

Education and Income example:
Only working people have an income
So estimated effect of education on income is only the effect on already
employed persons
If education ⇒ a higher probability of working, then total effect should
take into account this probability

This is a subtle bias (related to external validity in some ways)
If sample selection makes E (U|X ) 6= 0 then OLS is biased
If sample selection makes β only consistent for a subpopulation, then
interpretation changes



Sample Selection Bias

Sample Selection Bias
Solutions (Brief)

Sample Selection Bias occurs when sample under consideration is
not selected randomly from population under consideration

This is not selection bias
Selection bias was about who is assigned treatment versus control
Sample selection is about whether data is missing for some group

Solutions:
Typically hard to deal with
Either get more data from the full population...
... or model the selection issue (hard to do)



Measurement Error

Measurement Error (Errors-in-Variables) Bias
Problem: X variable is measured with noise

Mathematically:

TRUTH:Y = β0 + β1X + U
DATA:Y = β0 + β1X ∗ + U∗

where X ∗ is a noisy measure of X

Examples:
Recording errors in data entry
Recollection errors in survey data (these are frequent)
Rounding errors
Hard to measure variables

Note: we can also have measurement error in Y . Turns out
measurement error in Y does not cause any bias (though it does add
noise to U, increasing Var(β̂1)).



Measurement Error

Visualizing Measurement Error: Self-Reported Australian
Incomes
Survey question: What is your income in thousands?
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The lumps occur at 5s and 0s
E.g., people making 41k might say “40” or “45” instead of 41



Measurement Error

Measurement Error in X
The Math of Measurement Error

Classic measurement error: some random noise, vi , is added to Xi :
Formally, vi is independent of Xi and ui
Note: If ui and Xi are correlated this is very complicated

Yi =β0 + β1X ∗
i + ui

Yi =β0 + β1(Xi + vi ) + ui

=β0 + β1Xi + β1vi + ui︸ ︷︷ ︸
“New” Error Term

We will see that this will ”attenuate” β̂1 toward zero



Measurement Error

Classical Measurement Error Math

Suppose that we do not observe Xi , but rather X ∗
i , where X ∗

i = Xi + vi
and vi ∼ N (0, σ2

v ) and is independent of Xi and ui . Find the bias when
you run the OLS regression:

Yi = β0 + β1X ∗
i + ui



Measurement Error

Workspace



Measurement Error

Measurement Error in X

We found that:

β̂OLS = β1 ×
σ2

X
σ2

X + σ2
v︸ ︷︷ ︸

Attenuation

Estimated coefficient converges to the truth times an attenuation
term

Attenuation term is less than 1 ⇒ pushes coefficient towards zero
It does not make the term more negative—it squeezes the coefficient
and preserves the sign

This “attenuates” the effect of X on Y . Hence the name: attenuation
bias



Measurement Error

Measurement Error in X
Classical Measurement Error Intuition

Why does measurement error attenuate the estimated effect of X on
Y ?

Noise in measured X makes it more likely to see high X and low X
with some Y because of randomness
Extreme example: fix X and keep adding noise—eventually X ∗ will
look like noise itself

Notice the following rearranging of the attenuation term:

σ2
X

σ2
X + σ2

v
= 1

1 + (σ2
v/σ

2
X )

σ2
X/σ

2
v is called the signal-to-noise ratio

Larger signal to noise ratio ⇒ smaller bias
What matter is the relative variance of X to v
If σ2

v is small relative to σ2
X then attenuation bias isn’t too large



Measurement Error

Visualizing Measurement Error
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Measurement Error

Visualizing Measurement Error
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Measurement Error

Visualizing Measurement Error
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... then the estimated slope is flatter



Simultaneity/Reverse Causality

Simultaneity Bias

Suppose we want to estimate the demand elasticity for butter:

ln(Qbutter
i ) = β0 + β1ln(Pbutter

i ) + ui

β1 here is price elasticity of butter
e.g., percent change in quantity for a 1% change in price (recall log-log
specification)

The above OLS regression will suffer from simultaneous causality bias



Simultaneity/Reverse Causality

Simultaneity Bias Continued

Simultaneity bas arises because price and quantity are determined
jointly

Remember ECO 100:



Simultaneity/Reverse Causality

Visualizing Simultaneity Bias

So your data will end up looking like this:

You will effectively get a slope of zero in this regression



Simultaneity/Reverse Causality

Visualizing Simultaneity Bias

But if only supply shifted you would get the correct slope:

We thus needs something that only shifts supply (or demand) to solve
this problem



Simultaneity/Reverse Causality

Reverse Causality/Simultaneity Bias

Reverse causality and simultaneity bias are similar ideas

Simultaneity: X and Y are determined at the same time

Reverse causality: Y causes X
Simple solution: Change your Y and X variable!

Bigger problem: reverse causality is usually a sign of simultaneity bias
Example: More police causes lowers crime, but more crime also causes
higher police presence
Besides trivial case where you mixed up your X and Y , reverse
causality and simultaneity are usually the same thing



Simultaneity/Reverse Causality

The Miracle Worker!

Instrumental Variables have the ability to solve:
1 Simultaneity bias (this is what they were originally used for)
2 Measurement error
3 Omitted variable bias
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Intro

Instrumental Variables Introduction

Three quasi-experimental designs:
1 Difference-in-Differences
2 Instrumental Variables
3 Regression Discontinuity

Instrumental variables are the most wide-ranging of our
quasi-experimental designs, in that they can solve:

1 Simultaneity bias (this is what they were originally used for)
2 Measurement error
3 Omitted variable bias

We will mostly discuss how we use them to eliminate omitted variable
bias



Intro

Basic Idea

Basic Idea of Instrumental Variable (IV):
What if we have a variable that is correlated with X but not with Y
Then any changes in Y caused by that variable will reflect causal
changes by X

Equation of interest:

Yi = β0 + β1Xi + Ui

IVs break X into two pieces that are themselves uncorrelated:

Xi = Zi + Vi

A piece that is not correlated with U (Cov(Z ,U) = 0)
A piece that is correlated with U (Cov(V ,U) 6= 0)
Finally, Cov(Z ,V ) = 0

Zi is an instrumental variable



Intro

Terminology Review

A “Good” Regression:

X U

Y

Exogenous

Endogenous

Exogenous Variables: Variables in the data that do not cause each other
U is always exogenous, so exogenous also just means variables not
correlated with U

Endogenous Variables: Variables that are determined by exogenous
variables in the model

U is always in Y so Y is always endogenous



Intro

Omitted Variable Bias with Pictures

Selection/OVB:

X

U

Y

Exogenous

Endogenous

In this picture X is endogenous because U now causes X as well
What if there is another exogenous variable that does not directly cause Y ?



Intro

Omitted Variable Bias with Pictures

Instrumental Variable:

X

U

Y

Z

Exogenous

Endogenous

Z causes Y only indirectly through X

We can estimate “causal effect” of Z on Y and this MUST be the causal
effect of Z on X and the causal effect of X on Y

Mathematically we need to split effect of on Z on Y into effect of Z
on X and X on Y



Intro

Formal Definition of an Instrumental Variable

Model:
Yi = β0 + β1Xi + Ui

We call a variable Z a a valid instrumental variable if the following
two conditions hold:

1 Relevance: Cov(X ,Z ) 6= 0
An arrow from Z to X in the pictures

2 Exogeneity: Cov(U,Z ) = 0
No arrow from Z to Y or Z to U in the picture



Intro

Key Assumption #1 of Instrumental Variables

Relevance: Cov(X ,Z ) 6= 0

This assumption just means that X and Z are correlated

We observe both X and Z , so can easily test this assumption by
regressing:

Xi = β0 + β1Zi + ui

If β1 6= 0 in regression, we say instrument is relevant



Intro

Key Assumptions #2 of Instrumental Variables

Exogeneity: Cov(U,Z ) = 0

This assumption means that Z and U cannot be correlated

We do not observe U, so we cannot test this assumption

In general, we need to “defend” this assumption by telling a story
about why Z and U are unlikely to be correlated

Discuss this a lot later, but basically want to say that Z randomly
assigns different X to individual



Intro

Best Defense of Exogeneity IV Assumption: Randomized
Experiment

Back to our Project STAR class size example:

scorei = β0 + β1CSi + ui

where:
scorei : Test score of student i
CSi : Class size of student i

Suppose that we use a coin flip that sends kids that get a “head” to a
small class and kids getting a “tails” to big class

This is our randomized experiment!

Let’s call the coin flip our instrument Z (where Zi = 1 if heads,
Zi = 0 if tails)



Intro

Best Defense of Exogeneity IV Assumption: Randomized
Experiment

scorei = β0 + β1CSi + ui

Is Z (our coin flip) a good instrument?

Relevance: Cov(CS,Z ) 6= 0? Yes, if Zi = 1 kid gets small class, if
Zi = 0 kid gets big class

So the regression CSi = β0 + β1Zi + ui will estimate that β1 < 0

Exogeneity: Cov(U,Z ) 6= 0? Untestable – so need “storytime”
Story: Exogeneity holds because coin flip is random and does not
depend on any student or parent characteristics that would affect test
scores. Therefore, there is nothing related to Z (besides X ) that is also
related to test scores, so U and Z must be uncorrelated



Intro

Randomized Experiment as an IV

scorei = β0 + β1CSi + ui

So a randomized experiment can be treated as an IV
Big difference: can test randomized experiment somewhat by checking
balance of covariates, while IVs often cannot be tested
For that reason, usually differentiate between IVs and randomized
experiments

Later we will see different Z s. Good way to form your “story” of
whether they are good: think of whether they are “mimicking” a
randomized experiment
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