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Illustrative reading:

I Thomas: chapters 3, 4, 5 and 6.

I First year materials: EC122/124
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Questions

Consider the following policy orientated questions:

I What is the likely outcome of the next general election?

I What is the mean and variance of child malnutrition in
2010 across all countries?

I What is the effect of micro-credit programs on child
education?

I How does crime vary with capital punishment across US
states?

I What is the effect of inequality on growth rates across
countries in 2010?
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Statistical inference in the empirical framework

In general, once you have: i) developed a question, ii) chosen a
data set and method and iii) estimated an effect you should ask
yourself:

I What is the direction of the effect? Does it make sense?
How can you explain it? Can we give it a causal
interpretation?

I Is the effect economically (practically) important? What is
the size of the effect?

I Is the effect statistically significant in the population of
interest?

The third question relates to the concept of population
inference. That is, we want to use the sample to make
statements about the underlying population of interest. At
the heart of inference is the concept of sampling distributions.
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Estimates and estimators

An estimator is a rule for calculating an estimate of some
unknown population quantity. In this course we will assume the
estimator is applied to a set of random observations: a
random sample.

Given the estimator will change when we change the set of
observations, implies the estimator is a random variable.

An estimate is a particular realisation calculated from a
specific set of observations.
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Estimates and estimators

In this lecture, we will use the mean estimator (X̄) to get across
the core ideas, where

X̄ =
1

n

n∑
i=1

Xi

For example, while X̄ is an estimator of the population mean µ,
x̄ = 42 is an estimate of the population mean.
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Population of interest

A good empirical analysis first requires that a population of
interest is defined. In general, a population of interest is any
well-defined group of:

I individuals, firms, cities, countries, ... etc.

I well-defined in the sense of a time and place: individuals in
the UK between 2001 and 2010.

Suppose we are interested in estimating the mean income of the
male UK working population, aged 25− 60 in the 2010.
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Population versus random sample

Due to time and cost constraints, we cannot feasible survey all
individuals in the population (of size N) and use this
information to calculate the population mean (µ) directly.

Instead, we typically use a random sample of size n, where
n < N , from the population. We then use this sample to
estimate µ using the mean estimator X̄.

Throughout this course we will assume we are working with
random samples. This implies that:

I all individuals have an equal probability of being selected
from the population of interest

I there is no dependence between them: if individual i is
selected is does not affect the probability that individual j
is selected.
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Random sampling

Throughout this course we will assume we are working with
random samples from the population of interest.

I Suppose our underlying population is represented by a
random variable X with an associated pdf fX(x).

I From fX(x) we randomly make n draws.

I The resulting set {X1, X2, ..., Xn} is known as random
sample, where Cov(Xi, Xj) = 0 ∀ i 6= j.1

I The upper cases {X1, X2, ..., Xn} imply, prior to a sample
being drawn, each draw Xi can theoretically take any value
from the underlying population distribution f(x).

I Once a random sample has been taken it is represented as
{x1, x2, ..., xn}.

1Alternatively stated, {X1, X2, ..., Xn} is an independently identically
distributed (iid) sample.
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Sampling distributions

Conceptually, we could:

1. draw an infinite number of random samples from the
population.

2. apply the mean estimator, (X̄), to each sample.

3. plot each resulting mean estimate x̄i.

4. this would give a (probability) distribution of estimates:
{x̄1, x̄2, ..., x̄m}.

5. the pdf of this distribution is known as the sampling
distribution, written fX̄(x̄).
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Sampling distributions

Practically, we will only have one sample and one estimate,
however, it is crucial to note:

1. That the estimate will be drawn from the sampling
distribution.

2. Therefore, if we know the shape of the sampling
distribution. For example, it could have a normal
distribution.

3. We can make probabilistic statements about how close the
estimate is likely to be to the population mean.
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Sampling distributions

Given we will never know the population mean µ (otherwise, we
wouldn’t need to estimate it). The practical question becomes:

I How close is the estimate x̄ likely to be to µ?

I Using the sampling distribution and some results from
statistical theory we can answer this question
probabilistically.

I To do this we need to know three main properties of the
sampling distribution:

1. Its mean.
2. Its variance.
3. Its shape.
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Stata simulation: population X ∼ N(50, 100)

The main principles that govern the shape of the mean
estimator’s sampling distribution:

I Question: How do we estimate the mean of a population?

I Suppose we know the underlying population
X ∼ N(50, 100).

I To illustrate the idea, suppose we don’t know that µ = 50
and we want to estimate it using a random sample of 30
observations.

I What can we learn from this single sample about the
population mean, µ?
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Stata simulation: population X ∼ N(50, 100)

What can we learn about the population from a single sample?

I From the first random sample of 30 observations: x̄1 = ....

I How close is the sample mean to the population mean?

I For a single sample we can never know.

I To learn about how close our sample mean is likely to be to
the population mean we need to take more samples.

I From the second random sample of 30 observations:
x̄2 = ....

I From the third random sample of 30 observations: x̄3 = ....

I ...

I The nth random sample of 30 observations: x̄n = ....

In theory we should do this resampling an infinite number of
times. Instead we will do it 10, 000 times.
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Stata simulation: population X ∼ N(50, 100)

Intuitively:

1. Which value do you think the sampling distribution will be
centered about? (What is its expected value?)

2. What do you think the spread of the sampling distribution
will be? (What is its variance?)

3. What do you think will be the shape of the sampling
distribution? (Will it follow any specific type of
distribution?)

Given our particular estimate comes from this sampling
distribution, the answer to these questions gives us information
on how likely any given estimate is likely to be to the
population mean.
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Stata simulation: population X ∼ N(50, 100)

What do you notice about the mean of the sampling
distribution for the mean estimator?

The mean of the sampling distribution is centered
about the population mean.

I This result comes from the fact that the mean estimator is
an unbiased estimator of the population mean: E[X̄] = µ.

I This result holds independently of the size of the sample,
big or small.

I It is known as a finite sample property.
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Stata simulation: population X ∼ N(50, 100)

What do you notice about the variance of the sampling
distribution for the mean estimator?

The variance (and the standard deviation) of the
sampling distribution is smaller than the standard
deviation of the population.

I The degree of spread is a measure of the precision of our
estimator (or efficiency).

I The formula outlining this result (σ2/n) holds for all
sample sizes.

I Thus, it is a finite sample property.

I Note, however, holding all else constant the precision will
increase with sample size n. Consider, the previous
example, but now with 100 observations.
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Stata simulation: population X ∼ N(50, 100)

What do you notice about the shape of the sampling
distribution for the mean estimator?

I The shape of the sampling distribution closely
approximates a normal distribution.

I Again this is a finite sample property for normal
populations.

I Because the underlying population is normal this result
holds for any sample size.
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Stata simulation: population X ∼ N(50, 100)

If the underlying population is X ∼ N(50, 100) and we have a
sample of n = 30, then we know the shape of the mean
estimator’s sampling distribution is:

X̄ ∼ N(50, 100/30)

More generally, if the underlying population is X ∼ N(µ, σ2)
the shape of the mean sampling distribution is:

X̄ ∼ N(µ, σ2/n)
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Showing the general result for X ∼ N(µ, σ2)

The underlying popultion is as before: X ∼ N(µ, σ2). Let
{X1, X2, ..., Xn} be a random sample of size n.
The mean estimator is X̄ = (1/n)

∑n
i=1Xi. The expected value

of X̄ is:

E[X̄] = E[
1

n
(X1 +X2 + ...+Xn)]

=
1

n
E[X1] +

1

n
E[X2] + ...+

1

n
E[Xn]

=
nµ

n
= µ

I This shows X̄ is an unbiased estimator of µ.

I Note, in this calculation we made no assumption about the
shape or size of the underlying population.
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Showing the general result for X ∼ N(µ, σ2)
The variance of X̄ is:

V (X̄) = V (
1

n

n∑
i=1

Xi) =
1

n2
V (

n∑
i=1

Xi)

=
1

n2
(V [X1] + V [X2] + ...+ V [Xn]+

2cov(X1, X2) + 2cov(X1, X3) + ...+ 2cov(Xn−1,Xn)

=
1

n2
(σ2 + σ2 + ...+ σ2)

=
nσ2

n2
=
σ2

n

I Showing explicitly, as the sample size grows the variance
falls.

I Note, in this calculation we made no assumption about the
shape or size of the underlying population.

Sampling 21 / 40



Showing the general result X ∼ N(µ, σ2)

The shape of X̄:

1. Each Xi is normally distributed: Xi ∼ N(µ, σ2)

2. We know that a weighted sum of normally distributed
random variables is itself normally distributed.

3. The mean X̄ =
∑n

i=1Xi is a sum of weighted random
variables each with a normal distribution.

Therefore, the mean estimator is normally distributed:
X̄ ∼ N(µ, σ2/n).

I Note, this result relies, crucially, on the assumption about
the shape (but not the size) of the underlying population.
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Stata simulation: population X ∼ bin(1, 0.5)

What do you think the shape of the mean sampling distribution
will be if the underlying population is non-normal,
X ∼ bin(1, 0.5), for example?

It depends on the size of the sample:

I n = 1

I n = 2

I n = 10

I n = 30

I n = 120 ...
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The Central Limit Theorem (CLT)
What would happen if we made no assumptions about the
shape of the underlying population?

Let X1, X2, ..., Xn be an n independent random variables from
ANY common population of mean µ and (finite) variance σ2.
Then define X = X1 +X2 + ...+Xn. The expected value does
not depend on shape of Xi:

E[X] =E[X1 +X2 + ...+Xn]

=E[X1] + E[X2] + ...+ E[Xn]

=nµ

The variance does not depend on shape of Xi:

V [X] =V [X1 +X2 + ...+Xn]

=V [X1] + V [X2] + ...+ V [Xn]

=nσ2
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The Central Limit Theorem (CLT)

However, the shape of X does depend on the shape of the
underlying population, Xi.

However, importantly, the CLT means that as the number of
terms in the summation becomes large (n > 30), no matter
what the common shape of the underlying population Xi the
summation X = X1 +X2 + ...+Xn is normally distributed:

X ∼ N(.)

Note, the result gets stronger as the sample size grows (it
asymptotically converges to the normal distribution). It is a
large sample property.
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The Central Limit Theorem (CLT): mean estimator
Let X1, X2, ..., Xn be n independent random variables from
ANY common population of mean µ and (finite) variance σ2.
The mean estimator is X̄ = (1/n)

∑n
i=1Xi. Then:

The expected value of X̄ is:

E[X̄] = E[
1

n
(X1 +X2 + ...+Xn)]

=
1

n
E[X1] +

1

n
E[X2] + ...+

1

n
E[Xn]

=
nµ

n
= µ

I This shows X̄ is an unbiased estimator of µ.

I Note, in this calculation we made no assumption about the
shape of the population distribution.
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The Central Limit Theorem (CLT): mean estimator
The variance of X̄ is:

V (X̄) = V (
1

n

n∑
i=1

Xi) =
1

n2
V (

n∑
i=1

Xi)

=
1

n2
(V [X1] + V [X2] + ...+ V [Xn]+

2cov(X1, X2) + 2cov(X1, X3) + ...+ 2cov(Xn−1,n)

=
1

n2
(σ2 + σ2 + ...+ σ2)

=
nσ2

n2
=
σ2

n

I Showing explicitly, as the sample size grows the variance
falls.

I Note, in this calculation we made no assumption about the
shape of the population distribution.
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The Central Limit Theorem (CLT): mean estimator

We can use the CLT theorem to give us the shape of the X̄
sampling distribution. The CLT tells us that no matter the
underlying population:

X̄ ∼ N(µ,
σ2

n
)

The sampling distribution of the mean estimator asymptotically
converges to the normal distribution.
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Sampling distribution of X̄

The above examples have shown explicitly how the sampling
distribution of the mean estimator depends on three main
factors:

1. The sample size: n

2. Knowledge of the underlying population distribution,
Xi ∼ D(.):, in particular: its mean, variance and shape

3. The estimator chosen. The shape, bias and spread
(precision) of the sampling distribution will be different for
different estimators. So far we have only considered the
mean estimator.
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Estimators and their sampling distributions

Let us consider a few variations. Whether we can specify the
shape of the mean estimator’s sampling distribution will depend
on what we know (or assume) about the underlying
populations: i) distribution and ii) variance σ2, as well as our
sample size n. The following summarises whether we can define
(yes or no) the shape of the sampling distribution:

1. X ∼ N(.) and σ2 is known, small n (yes) / large n (yes)

2. X ∼ N(.) and σ2 is unknown , small n (yes) / large n (yes)

3. X ∼ D(.) where D(.) is unknown but σ2 is known, small n
(no) / large n (yes)

4. X ∼ D(.) where D(.) is unknown and σ2 are unknown,
small n (no) / large n (yes)
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The mean estimator’s sampling distribution

The shape of sampling distribution when the sample size n is
small (n < 30):

1. X ∼ N(µ, σ2) with σ2 known =⇒ Z = X̄−µ
σ/
√
n
∼ N(0, 1)

2. X ∼ N(µ, σ2) with σ2 unknown =⇒ t = X̄−µ
S/
√
n
∼ tn−1

3. X ∼ D(.) and D(.) is unknown means we don’t have
enough information to generate shape of sampling
distribution.

4. X ∼ D(.) and D(.) is unknown means we don’t have
enough information to generate shape of sampling
distribution.
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The mean estimator’s sampling distribution

Explaining result number 2. Recall, if Z ∼ N(0, 1) and X ∼ χ2
n,

then the random variable defined as,

T =
Z√
X/n

has a t-distribution with n degrees of freedom, written T ∼ tn.

I Here, the mean estimator has a standard normal
distribution and the estimator for the variance has a χ2

n−1

sampling distribution.

I Intuitively, the use of the t-dist takes account of the added
variability that comes from using an estimator for the
population variance.
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The mean estimator’s sampling distribution

A quick note on the difference between the standard deviation
and the standard error:

I The value σ/
√
n is the standard deviation of the mean

estimator.

I The value S/
√
n is the standard error of the mean

estimator.

The different terms are used to distinguish whether you have
used: i) the actual population standard deviation (σ) to
estimate the mean or ii) an estimate of the population standard
deviation S.
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The mean estimator’s sampling distribution

The shape of sampling distribution when the sample size n is
large:

1. X ∼ N(µ, σ2) with σ2 known =⇒ Z = X̄−µ
σ/
√
n
∼ N(0, 1)

2. X ∼ N(µ, σ2) with σ2 unknown =⇒ Z = X̄−µ
S/
√
n
∼ N(0, 1)

3. X ∼?(µX , σ
2) with σ2 known =⇒ Z = X̄−µ

σ/
√
n
∼ N(0, 1)

4. X ∼?(µX , σ
2) with σ2 unknown =⇒ Z = X̄−µ

S/
√
n
∼ N(0, 1)

I Result 2 uses the standard normal rather than the
t-distribution, recognising the t-distribution tends to the
standard normal as n increases.

I Result 2 and 3 results invoke the CLT.
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Sampling distribution: summary

I The population parameter µ can be estimated using the
estimator X̄.

I X̄ has an associated sampling distribution.

I The shape of which depends on: i) the parameter being
estimated, ii) the shape of underlying population
distribution and iii) the size of the sample.

Why do we care about sampling distributions?

1. To compare between estimators. For example, what are the
statistical reasons for using the estimator X̄?

2. For population inference.
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Comparing between estimators

Why did we choose the mean estimator 1
n

∑n
i=1Xi? Why did

we not use some other estimator?

More generally, for any given population parameter θ there are
an infinite number of estimators available to estimate it. How
do you choose between them? Suppose, we have a generic
estimator which is a function of the sample, W = h(X1, ..., Xn).
The following criteria are used:

I Bias: Bias(W ) = E[W ]− θ. An estimator is said to be
unbiased if E[W ] = θ.

I Efficiency: given two estimators W1 and W2, W1 is efficient
relative to W2 if V (W1) ≤ V (W2).

I Mean squared error:
MSE(W ) = E[(W − θ)2] = V (W ) +Bias(W )2.
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Comparing between estimators

To illustrate, consider the following example:

I We draw a random sample of size n from a population with
mean µ and variance σ2.

I Suppose we want to select from the following three linear
estimators:2

1. W1 = X3

2. W2 = 1
n

∑n
i=1Xi

3. W3 = 1
2n

∑n
i=1Xi

2Linear in the sense that they are all a weighted averages of the form:∑n
i=1 wiXi. Note all estimators in this course will be linear weighted

averages.
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Comparing between estimators

The bias of W1,W2 and W3:

I E[W1] = E[X3] = µ

I E[W2] = E[ 1
n

∑n
i=1Xi] = 1

n

∑n
i=1E[Xi] = 1

n

∑n
i=1 µ = nµ

n =
µ

I E[W3] = E[ 1
2n

∑n
i=1Xi] = µ

2

I Thus, W1 and W2 are unbiased.

In this course we are only concerned with unbiased estimators.
So we drop W3.
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Comparing between estimators

The variance of W1 and W2:

I V [W1] = V (X3) = σ2

I V [W2] = V [ 1
n

∑n
i=1Xi] = 1

n2

∑n
i=1 V [Xi] = 1

n2

∑n
i=1 σ

2 =
nµ
n2 = σ2

n

I Given V [W2] < V [W1], using the minimum variance criteria
among unbiased estimators, we would choose W2.

Note, it is possible to prove that W2 is the best linear unbiased
estimator (BLUE). That is, out of all unbiased linear
estimators, W2 is the most efficient.3

3Note,

V [W3] = V [ 1
2n

∑n
i=1Xi] =

1
4n2

∑n
i=1 V [Xi] =

1
4n2

∑n
i=1 σ

2 = nµ
4n2 = σ2

4n
.

Further, if we didn’t restrict our attention to unbiased estimators,
MSE(W ) = E[(W − θ)2] = V (W ) +Bias(W )2 is another common criteria.
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Stata simulation: comparing between estimators

Simulation to show above results:

I Bias: W1 and W2 sampling distributions are centered
around the population mean (unbiased).

I Variance: the variance of W2 is much lower than the
variance of W2.

I (Note: W3 has the minimum variance but it is biased as it
is centered about µ/2.)
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