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Illustrative reading:

I Thomas: chapters 1 and 2.

I First year materials: EC122/124
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Random variables

A random variable (RV) is any variable whose outcome has
uncertainty associated with it. RVs do not have a single value
associated to them, instead they can take a range of values. We
will use RVs in econometrics for three main purposes:

1. Descriptive statistics: describing variables of interest, such
as, income, treatments, health outcomes, unemployment
rates, ... etc.

2. Bias and efficiency: evaluating the properties of estimators
using sampling distributions.

3. Population inference: using estimators, samples and
associated sampling distributions to make statistical
statements about the population of interest.
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Random Variables

There are two types of random variables:

1. discrete:
I the outcomes are countable.
I each outcome has an associated probability of occurring.

2. continuous:
I the outcomes are continuous or, at least, are not feasibly

countable.
I all particular outcomes have a zero probability of occurring.
I probabilities are associated with ranges of outcomes.

Notation: we denote random variables in upper case X,Y, Z
and specific realisations in lower case x, y, z.
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Useful definitions

Definition 1: The sample space, S, of an experiment is the set
of all possible outcomes of that experiment. This is typically
written S = {s1, s2, ..., sk}, where sj , i = 1, ..., k represent the k
possible outcomes.

Definition 2: An event, A, is any set of possible outcomes to an
experiment. For example, A = {s1}, A = {s1, sk}, or
A = {si, sj} where i 6= j, ... etc.
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Useful probability results

Given a sample space S then the following are useful
probability axioms:

I The probaility of any event (A) occuring lies between zero
and one, inclusive: P (A) ∈ [0, 1].

I If events Ai, i = 1, 2, ..., n are mututally exclusive, such
that Ai ∩Aj = ∅ for all i 6= j, then
P (A1 ∪A2 ∪ ... ∪An) = P (A1) + P (A2) + ...+ P (An).

I If events Ai, i = 1, 2, ..., n are statistically independent then
P (A1 ∩A2... ∩An) = P (A1)P (A2)P (A3)...P (An).

Random variables 6 / 52



Discrete random variables: a single coin toss

As an example of a discrete random variable take a single coin
toss:

I The sample space for a single coin toss is
S = {s1, s2} = {T,H}

I Then a random variable X is a rule, which assigns each
outcome in the sample space to a real number, X(S) = x.

I Here let X(S) represent the number of heads on a coin toss,
that is, X(T ) = 0 and X(H) = 1.

I Here x = 0 and x = 1 are the specific outcomes.
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Discrete random variables: a single coin toss

The probability distribution function (pdf) associated
with X, written fX(x), is:

I P (X = 0) = 0.5, the probability that X = 0 is 50%.

I P (X = 1) = 0.5, the probability that X = 1 is 50%.

The cumulative distribution function (cdf) associated
with X, written FX(x), is:

I P (X ≤ 0) = P (X = 0) = 0.5, the probability X is less than
or equal to 0.

I P (X ≤ 1) = P (X = 0) + P (X = 1) = 1, the probability X
is less than or equal to 1.
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Discrete random variables: three coin tosses

Now take the example of three coin tosses:

I The sample space for three coin tosses is

I S = {s1, s2, ..., s8}
I S = {TTT, TTH, THT, THH,HTT,HTH,HHT,HHH}

Then let the random variable X(S) = the number of heads,
such that,

I X(TTT ) = 0

I X(HTT ) = X(THT ) = X(TTH) = 1

I X(HHT ) = X(HTH) = X(THH) = 2

I X(HHH) = 3
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Discrete random variables: three coin toss

I The pdf associated with X is:
I P (X = 0) = P (TTT ) = P (T )P (T )P (T ) = (0.5)(0.5)(0.5) =

0.125
I P (X = 1) = P (HTT ) + P (THT ) + P (TTH) =

0.125 + 0.125 + 0.125 = 0.375
I P (X = 2) = P (HHT ) + P (HTH) + P (THH) =

0.125 + 0.125 + 0.125 = 0.375
I P (X = 3) = P (HHH) = 0.125

I The pdf fX(x) representing X is,

xj 0 1 2 3

fX(xj) 0.125 0.375 0.375 0.125

I That is, fX(x) tracks the probability that exactly xj heads
are attained in 3 coin tosses.
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Discrete random variables: three coin toss

I the cdf associated with X is:
I P (X ≤ 0) = P (X = 0) = 0.125
I P (X ≤ 1) = P (X = 0) + P (X = 1) = 0.5
I P (X ≤ 2) = P (X = 0) + P (X = 0) + P (X = 0) = 0.875
I P (X ≤ 3) = P (X = 0) + P (X = 0) + P (X = 0) + P (X =

0) = 1

I The cdf FX(x) is summarised in the table below,

xj 0 1 2 3

FX(xj) 0.125 0.5 0.875 1

I That is, FX(xj) tracks the probability that up to or less
than xj heads are attained in 3 coin tosses.
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Discrete random variables: the general case

Let X represent a random variable that can take k possible
values {x1, x2, x3, ..., xk} each with an associated probability
p1, p2, p3, ..., pk, where,

1. The probability that X takes the value xj is written
pj = P (X = xj).

2. It is the case that pj ∈ [0, 1].

3. Further, for fX(x) to represent a true pdf it must be the
case that

∑k
j=1 pj = 1.
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Discrete random variables: the general case

The pdf fX(x) summarises the possible outcomes of X and the
associated probabilities, such that,

1. fX(xj) = pj = P (X = xj)

2. fX(xj) ≥ 0 and f(xj) ≤ 1

3.
∑k

j=1 f(xj) = 1

The cdf FX(x) is such that,

1. FX(xl) = P (X ≤ xl), where l ∈ (1, 2, 3, ..., k)

2. FX(xl) =
∑l

j=1 pj =
∑l

j=1 fX(xj)

3. FX(xk) = P (X ≤ xk) =
∑k

j=1 fX(xj) = 1
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Random variables: expected values and dispersion

Given a random variable, X, in this course we will we will often
work with:

1. the mean, or expected value, of X: E[X].

2. the variance of X: V (X).

3. the standard deviation of X: sd(X).
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Random variables: the expected value of X

Suppose X takes on a finite number of values, x = x1, ...xk and
each has an associated probability p1, ..., pk. The expected value
of X is,

E[X] =

k∑
j=1

pj(x)xj = p1x1 + p2x2 + ...+ pkxk

For example, in a population of size N , where each individual
appears once and has an associated probability of occuring
equal to the frequency of occurring,

E[X] =
1

N

N∑
i=1

xi
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Random variables: the expected value of X

Some important properties include:

1. For any constant c: E[c] = c.

2. For any constants any two constants a and b and random
variable X: E[aX + b] = aE[X] + b.

3. If {a1, a2, ..., ak} are constants and {X1, X2, ..., Xk} are
random variables then

∑k
i=1E[aiXi] =

∑k
i=1 aiE[Xi].

4. In general E[g(X)] =
∑

X pX(x)g(x). For instance higher
order moments can be calculated. The nth moment is
E[Xn] =

∑k
j=1 pj(x)xnj

5. Note, it is normally the case that E[g(X)] 6= g(E[X]). For
instance, typically E[X2] 6= E[X]2 .
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Discrete random variables: the variance of X
Suppose X takes on a finite number of values, x = x1, ...xk and
each has an associated probability p1, ..., pk. The variance of X
is,

V [X] =E[(X − E[X])2]

=

k∑
j=1

pj(x)(xj − E[X])2

=p1(x1 − E[X])2 + p2(x2 − E[X])2 + ...

...+ pk(xk − E[X])2

Or, alternatively,

V [X] = E[X2]− E[X]2

The standard deviation is the positive square root of the
variance: sd(X) = +

√
V (X)
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Discrete random variables: the variance of X

Some important properties of the variance include:

1. For any constant c: V (c) = 0

2. For any constants a and b and random variable X,
V (aX + b) = a2V (X)

3. For any constants a and b and random variables X and Y ,
V (aX + bY ) = a2V (X) + b2V (Y ) + 2abCov(X,Y )

4. Let {a1, a2, ..., ak} be constants and {X1, X2, ..., Xk} be
random variables, then,
V (

∑k
i=1 aiXi) =

∑k
i=1 a

2
iV (Xi) +

∑
i>j 2aiajCov(Xi, Xj)

5. Let {a1, a2, ..., ak} be constants and {X1, X2, ..., Xk} be
pairwise uncorrelated (independent), then,
V (

∑k
i=1 aiXi) =

∑k
i=1 a

2
iV (Xi)
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Discrete random variables: the variance of X

Some important properties of the standard deviation:

1. For any constant c: sd(c) = 0

2. For any constants a and b and random variable X,
sd(aX + b) = |a|sd(X)

3. Let {a1, a2, ..., ak} be constants and {X1, X2, ..., Xk} be
random variables , then, sd(

∑k
i=1 aiXi) =√∑k

i=1 a
2
iV (Xi) +

∑
i>j 2aiajCov(Xi, Xj)

4. Let {a1, a2, ..., ak} be constants and {X1, X2, ..., Xk} be
pairwise uncorrelated (independent), then,

sd(
∑k

i=1 aiXi) =
√∑

i=1 a
2
iV (Xi)
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Bivariate distributions

Now we consider bivariate probability density functions. That
is, probability distributions that represent the likelihood of two
random variables taking specific values.

Definition 1: We now have two sample spaces
SX = {x1, x2, ..., xk} and SY = {y1, y2, ..., yl}, one for each
random variable X and Y respectively.

Definition 2: An event, is now defined in terms of X and Y ’s
sample space. For example, the event xj ∩ yl is the event that
both xj and yl occur.
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Discrete bivariate distributions

A joint discrete pdf is represented in the table below,

Y

y1 y2 . . . yl

X

x1 P (x1 ∩ y1) P (x1 ∩ y2) . . . P (x1 ∩ yl)
x2 P (x2 ∩ y1) P (x2 ∩ y2) . . . P (x2 ∩ yl)
...

...
...

xk P (xk ∩ y1) P (xk ∩ y2) . . . P (xk ∩ yl)
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Discrete bivariate distributions

Where:

I The joint pdf is determined by
P (X = xi, Y = yi) = pij(x, y) for i = 1, .., k and j = 1, ..., l.

I The joint pdf defines a probability for each of the possible
combinations (x, y).

I The joint pdf is also commonly written as
fX,Y (X = x, Y = y) or just f(x, y).

As with univariate pdfs, to be a valid bivariate pdf we require:

I P (X = xi, Y = yj) ∈ [0, 1]

I
∑k

i=1

∑l
j=1 P (X = xi, Y = yj) = 1
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Discrete bivariate distributions: marginal distribution

Moving from the joint distribution to the marginal distribution.
Suppose we are only interested in the random variable X. Then
it is the case that,

P (X = xi, y1 ≤ Y ≤ yl) =

l∑
j=1

pX,Y (xi, yj)

=P (xi ∩ y1) + P (xi ∩ y2) + ...+ P (xi ∩ yl)

This gives us the marginal distribution for X, i.e. fX(x), which
summarises the possible outcomes of X and the associated
probabilities.
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Discrete bivariate distributions: marginal distribution

Moving from the joint distribution to the marginal distribution.
Suppose we are only interested in the random variable Y . Then
it is the case that,

P (Y = yj , x1 ≤ X ≤ xk) =

k∑
i=1

pX,Y (xi, yj)

=P (yj ∩ x1) + P (yj ∩ x2) + ...+ P (yj ∩ xk)

This gives us the marginal distribution for X, i.e. fY (y), which
summarises the possible outcomes of Y and the associated
probabilities.
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Discrete bivariate distributions: marginal distributions

The marginal distributions can be usefully tabulated along the
sides of the joint pdf,

Y

y1 y2 . . . yl fX(x)

X

x1 P (x1 ∩ y1) P (x1 ∩ y2) . . . P (x1 ∩ yl) P (x1)
x2 P (x2 ∩ y1) P (x2 ∩ y2) . . . P (x2 ∩ yl) P (x2)
...

...
...

...
xk P (xk ∩ y1) P (xk ∩ y2) . . . P (xk ∩ yl) P (xk)

fY (y) P (y1) P (y2) . . . P (yl) 1
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Discrete bivariate distributions: conditional
distributions

We can also calculate conditional probabilities and associated
distributions. Given two random variables X and Y , a joint
pdf, P (x, y), and the marginal distributions, P (x) and P (y), the
conditional pdf for the random variable X conditional on Y is:

P (x|y) =
P (x, y)

P (y)
also written fX|Y (x|y) =

fX,Y (x, y)

fY (y)

Or, rearranging the expression,

P (x, y) = P (x|y)P (y) also written fX,Y (x, y) = fX|Y (x|y)fY (y)
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Example: wages conditional on height

Consider the following table which represents the joint pdf for
height (H) against wages (W).

Height

1 2 3
below average above

Wage
1 low 0.253 0.092 0.032
2 medium 0.123 0.132 0.106
3 high 0.017 0.104 0.141
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Example: wages conditional on height

The marginal probability distibutions p(h) and p(w) are,

Height

1 2 3 p(w)
below average above

Wage
1 low 0.253 0.092 0.032 0.377
2 medium 0.123 0.132 0.106 0.361
3 high 0.017 0.104 0.141 0.263

p(h) 0.393 0.328 0.279
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Example: wages conditional on height

The conditional probability distributions p(w|h) are,

Height

1 2 3
below average above

Wage
1 low 0.643 0.280 0.115
2 medium 0.313 0.402 0.379
3 high 0.044 0.317 0.506

1.000 1.000 1.000

p(w|h = 1) p(w|h = 2) p(w|h = 3)
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Example: wages conditional on height

The conditional probability probability distributions p(h|w),

Height

1 2 3
below average above

Wage
1 low 0.671 0.244 0.085 1 p(h|w = 1)
2 medium 0.341 0.366 0.293 1 p(h|w = 2)
3 high 0.066 0.397 0.538 1 p(h|w = 3)
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Discrete bivariate distributions: expected values

From the discrete bivariate and marginal distributions we can
calculate moments of interest. For example:

1. Expected values: E[X] =
∑k

i=1 p(X = xi)xi and

E[Y ] =
∑l

j=1 p(Y = yj)yj

2. Variances: V (X) = E[X2]− E[X]2 and
V (Y ) = E[Y 2]− E[Y ]2

3. Higher order moments: E[Xn] =
∑k

i=1 p(X = xi)x
n
i and

E[Y n] =
∑l

j=1 p(Y = yj)y
n
j
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Discrete bivariate distributions: expected values

We can also calculate measure of dependence. For example, the
covariance between X and Y :

cov(X,Y ) = E{[X − E(X)][Y − E(Y )]}

=

k∑
i=1

l∑
j=1

pi,j(x, y)(xi − E[X])(yj − E[Y ])

= E[XY ]− E[X]E[Y ]

=

k∑
i=1

l∑
j=1

xiyjpi,j(x, y)−
k∑

i=1

xipi(x)

l∑
j=1

yjpj(y)
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Covariance

Covariance is an extremely useful measure. However, for our
purposes there are two main problems with covariance as a
measure of the association between two random variables:

1. It is not unit free. Since for any constants a1, a2, b1 and b2,
Cov(a1X + b1, a2Y + b2) = a1a2Cov(X,Y ).

2. It is only a measure of linear association.
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Correlation

Correlation addresses the first problem:

Corr(X,Y ) = ρXY =
Cov(X,Y )

sd(X)sd(Y )
=

σXY

σXσY

1. Given σX , σY > 0 means the Corr(X,Y ) and Cov(X,Y )
have the same sign.

2. Correlation is easier to interpret since,
−1 ≤ Corr(X,Y ) ≤ 1

3. For any constants a1, a2, b1 and b2, with a1a2 > 0:
Corr(a1X + b1, a2X + b2) = Corr(X,Y )

4. For any constants a1, a2, b1 and b2, with a1a2 < 0:
Corr(a1X + b1, a2X + b2) = −Corr(X,Y )

5. Properties 3 and 4 show explicitly that correlation is unit
free.

Random variables 34 / 52



Conditional expectations

The conditional expectations operator addresses the second
problem. It can be represented as,

E[Y |X = x] =

l∑
j=1

p(yj |x)yj

I This conditional expectation operator calculates the
expected value of Y at certain levels of X.

I It is possible to model non-linear associations.
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Conditional expectations

Some important properties of conditional expectations are:

1. For any function c(X), E[c(X)|X] = c(X). For example
E[X2|X] = X2, intuitively if we know X we know c(X).

2. For two functions a(X), b(X), and two random variables X
and Y , E[a(X)Y + b(X)|X] = a(X)E[Y |X] + b(X)

3. If two random variables are mean independent then
E[Y |X] = E[Y ]. That is, the expected (mean) value of Y
does not depend on the value the X takes.
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Height and wage example continued

Reconsider the height and wages associations

Height

1 2 3 p(w)
below average above

Wage
1 low 0.253 0.092 0.032 0.377
2 medium 0.123 0.132 0.106 0.361
3 high 0.017 0.104 0.141 0.263

p(h) 0.393 0.328 0.279
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Height and wage example continued

Expected values:

I E[H] = 0.393 ∗ 1 + 0.328 ∗ 2 + 0.279 ∗ 3 = 1.886

I E[W ] = 0.377 ∗ 1 + 0.361 ∗ 2 + 0.262 ∗ 3 = 1.886

Variances:

I E[H2] = 0.393 ∗ (12) + 0.328 ∗ (22) + 0.279 ∗ (32) = 4.2159

I E[W 2] = 0.377 ∗ (12) + 0.361 ∗ (22) + 0.262 ∗ (32) = 4.1831

I V (H) = E[H2]− E[H]2 = 0.6585

I V (W ) = E[W 2]− E[W ]2 = 0.6257
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Height and wage example continued

Covariance:

I cov(H,W ) = E[HW ]− E[H]E[W ]

I E[HW ] = 0.253(1)(1) + 0.092(1)(2) + 0.032(1)(2) + ...+
0.104(3)(2) + 0.141(3)(3) = 3.886

I cov(H,W ) = 3.886− (1.886)(1.886) = 0.331

Conditional expectations:

I E[W |H = 1] =
∑
wip(w|h = 1) =

1(0.643) + 2(0.313) + 3(0.044) = 1.400

I E[W |H = 2] =
∑
wip(w|h = 2) =

1(0.280) + 2(0.402) + 3(0.317) = 2.037

I E[W |H = 3] =
∑
wip(w|h = 3) =

1(0.115) + 2(0.379) + 3(0.506) = 2.391

I From this we can see that expected wages increases with
height.
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Random variables

There are two types of random variables:

1. discrete:
I the outcomes are countable.
I each outcome has an associated probability of occurring.

2. continuous:
I the outcomes are continuous or at least are not feasibly

countable.
I all particular outcomes have a zero probability of occurring.
I probabilities are associated with ranges of outcomes.

Notation: we denote random variables in upper case X,Y, Z
and specific realisations in lower case x, y, z.
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Continuous random variables

Let the random variable X take any value between [−∞,∞]
but specific values have a zero probability of occurring.1 Then
the pdf for X, denoted fX(x), can be used to track the
probability that X ∈ [a, b],

P [a ≤ X ≤ b] =

∫ b

a
fX(x)dx ∀ a ≤ b

In words, the probability that X lies between a and b is equal
to the area under the pdf from a to b. Further, a true pdf is
such that,

P [−∞ ≤ X ≤ ∞] =

∫ ∞
−∞

fX(x)dx = 1

That is, the entire area beneath the pdf must be equal to 1.

1That is, P [X = a] =
∫ a

a
fX(x)dx = 0.
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Continuous random variables

The cumulative density function (cdf), FX(x), summarises the
probability that X ∈ [−∞, x], which is equivalent to P [X ≤ x],
where x is some level of X. Therefore, the cdf is the area under
the pdf up to x,

P [−∞ ≤ X ≤ x] = F (x) =

∫ x

−∞
f(t)dt ∀ −∞ ≤ x

Further, given the total area under the pdf is equal to 1, it is
also the case that,

P [−∞ ≤ X ≤ ∞] = F (x) =

∫ ∞
−∞

f(x)dx = 1
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Useful properties

The following properties are useful. When X is continuous:

1. For any constant c P (X = c) = 0. This implies that

2. P (X ≥ c) = P (X > c)

3. P (a < X < b) = P (a ≤ X ≤ b) = P (a ≤ X < b) = P (a <
X ≤ b)

Further, when working with cdfs:

1. F (x) ∈ [0, 1]

2. If x1 ≤ x2 then
P (X ≤ x1) ≤ P (X ≤ x2) =⇒ F (x1) ≤ F (x2)

3. For any number c: P (X > c) = 1− F (c)

4. For any number a < b: P (a < X ≤ b) = F (b)− F (a)
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Random variables: expected values and dispersion

There are also continuous representations for each of the
following,

1. the mean, or expected value, of X.

2. the variance of X.

3. the standard deviation of X.

Random variables 44 / 52



Random variables: the expected value of X

For a continuous random variable, X, the expected value is:

E[X] =

∫ ∞
−∞

xfX(x)dx

Further, the standard rules, covered for the discrete case, also
hold for the continuous case, such as, E[aX] = aE[X]. Further,
we can calculate higher moments as,

E[Xn] =

∫ ∞
−∞

xnfX(x)dx
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Continuous random variables: the variance of X

For continuous random variables the variance of X is,

V [X] =E[(X − E[X])2]

=

∫ ∞
−∞

(x− E[X])2fX(x)dx

=E[X2]− E[X]2

=

∫ ∞
−∞

x2fX(x)dx− E[X]2

The standard deviation is the positive square root of the
variance. Further, the standard rules, covered for the discrete
case, also hold for the continuous case.
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Continuous bivariate distributions: joint distributions

There are also the equivalent continuous bivariate distributions.
Suppose we have two random variables, X and Y , then their
joint pdf fX,Y (x, y) has the following properties:

1. All probabilities lie between zero and one, inclusive:
fX,Y (x, y) ∈ [0, 1]

2. The total area under the joint pdf is equal to one:∫∞
−∞

∫∞
−∞ fX,Y (x, y)∂x∂y = 1
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Continuous bivariate distribution: marginal
distributions

Suppose we have two continuous random variables, say X and
Y , and their joint pdf fX,Y (x, y). To calculate the marginal
distribution of X, fX(x), integrate over the joint distribution
with respect to Y . (Think of this as being equivalent to, for
each value of X, summing over the discrete values of Y in the
discrete case.)

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy

To calculate the marginal distribution of Y , fY (y), integrate
over the joint distribution with respect to X.

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx
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Continuous bivariate distributions: expected values

From the continuous bivariate and marginal distributions we
can calculate the usual moments of interest:

1. Expected values: E[X] =
∫∞
−∞ xfX(x)dx and

E[y] =
∫∞
−∞ yfY (y)dy.

2. Variances:
V (X) = E[X2]− E[X]2 =

∫∞
−∞ x

2fX(x)dx− E[X]2 and

V (Y ) = E[Y 2]− E[Y ]2 =
∫∞
−∞ y

2fY (y)dy − E[Y ]2
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Continuous bivariate distributions: expected values

Further, we can calculate measures of covariance

cov(X,Y ) =E{[X − E(X)](Y − E(Y )]}

=

∫ ∞
−∞

∫ ∞
−∞

(x− E[X)(y − E[Y ])fX,Y (x, y)∂x∂y

=E[XY ]− E[X]E[Y ]

=

∫ ∞
−∞

∫ ∞
−∞

xyfX,Y (x, y)∂x∂y

−
∫ ∞
−∞

xfX(x)dx

∫ ∞
−∞

yfY (y)dy
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Conditional distributions

Given a joint pdf, fX,Y (x, y), and the marginal distributions,
fX(x) and fY (y), the conditional pdf for the random variables
X and Y is:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

Or, rearranging the expression,

fX,Y (x, y) = fX|Y (x|y)fY (y)
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Conditional expectations

As usual, we will be more concerned with expected values. The
conditional expectation operator is represented as,

E[Y |X = x] =

∫ ∞
−∞

yfY |X(y|x)dy

This tells us the expected value of Y, given certain levels of X.

Note: we will not explicilty use integration on this
course. However, it is important you understand the
basic idea to, for example, understand the calculation
of the area under the normal distribution, which we
consider next.
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