

School of Economics

Microeconomics Tutor Nottingham

Lecture Overview

- Lecture 4: representation of consumers' preferences using indifference curve.
- Preferences can also be represented mathematically using utility functions.
- Looked at the necessary mathematical tools in the last lecture.
- Now apply these tools to the analysis of utility functions.

- Recall: Our model of consumer behaviour implies that consumers can compare bundles of goods.
- Can summarise preferences by assigning a numerical value ('utility') to each bundle.
- A utility function U(x) assigns a utility level to every possible bundle of goods.
- Allows comparison of bundles
 - U(x) > U(y) is equivalent to $x \succ y$.
 - U(x) = U(y) is equivalent to $x \sim y$.

• Example: Suppose Lisa's preferences over pizzas and burritos can be represented by the following utility function:

$$U(q_P, q_B) = q_P^{0.5} q_B^{0.5} = \sqrt{q_P q_B}$$

• If bundle x has 72 burritos and 8 pizzas and bundle y has 12 each, Lisa prefers x to y because U(x) = 24 > U(y) = 12.

- Two types of utility functions: ordinal and cardinal.
- Ordinal utility functions:
 - Only describe rankings of bundles, not utility *levels*.
 - If $U(x) = 2 \times U(y)$, *does not* imply Lisa likes x twice as much as y.
 - Different utility functions can represent the same preferences (e.g., $V(q_P, q_B) = 2 \times \sqrt{q_P q_B}$)
 - Do not allow interpersonal comparisons of utility.

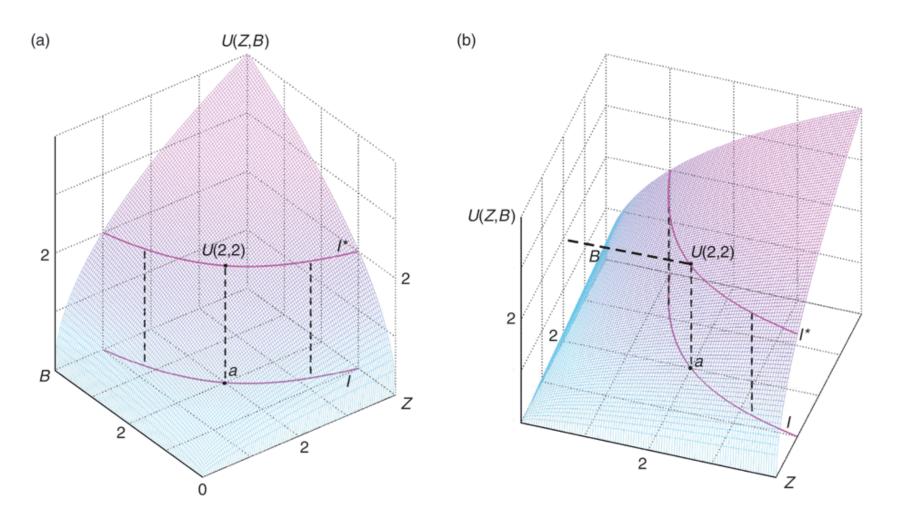
- Cardinal utility functions assign exact utility levels to bundles.
 - If U(x) is cardinal, $U(x) = 2 \times U(y)$ does imply that Lisa likes x twice as much as y.
- We will mostly use ordinal utility functions:
 - People can usually only rank bundles, not assign exact utility levels to them.
 - Interpersonal comparisons of utility generally thought of as impossible.

- Utility functions can summarise the information in indifference maps.
- If a consumer's utility is $U(q_1, q_2)$ then one of the corresponding indifference curves is:

 \overline{U} =U(q_1, q_2)

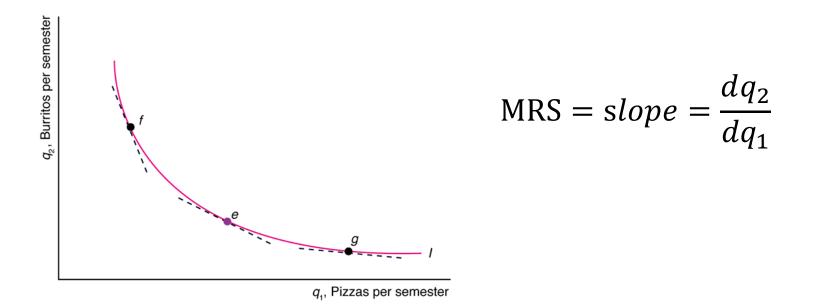
• Interpretation as contour lines of a threedimensional plot of $U(q_1, q_2)$. (Figure 1)

Figure 1: Utility Functions



Utility function: U(Z,B)

- Utility functions allow a reinterpretation of the slope of indifference curves.
- Recall that the slope measures the marginal rate of substitution (MRS) between goods.



- Start by defining the *marginal utility* of a good.
- Change in total utility from consuming an extra unit of a good.

Slices of pizza	Total utility	Marginal utility
0	0	
1	20	20
2	38	18
3	53	15
4	61	8
5	65	4
6	55	-10

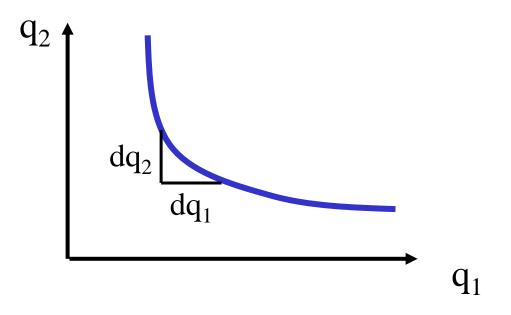
• Mathematically,

$$U_1 = \frac{\partial U(q_1, q_2)}{\partial q_1} \qquad U_2 = \frac{\partial U(q_1, q_2)}{\partial q_2}.$$

• Example: for $U(q_1, q_2) = q_1^{0.5} q_2^{0.5}$, we have

$$U_1 = 0.5q_1^{-0.5}q_2^{0.5}, \ U_2 = 0.5q_1^{0.5}q_2^{-0.5}.$$

• Moving down the curve, we give up q_2 and gain q_1 .



• Giving up a small amount of $q_2 (dq_2)$ decreases utility by $\frac{\partial U(q_1,q_2)}{\partial q_2} dq_2$; gaining dq₁ increases it by $\frac{\partial U(q_1,q_2)}{\partial q_1} dq_1$.

• Along the indifference curve utility is constant:

$$\frac{\partial U(q_1, q_2)}{\partial q_1} dq_1 + \frac{\partial U(q_1, q_2)}{\partial q_2} dq_2 = 0$$

• Solving for the MRS:

$$MRS = \frac{dq_2}{dq_1} = -\frac{\partial U(q_1, q_2)}{\partial q_1} / \frac{\partial U(q_1, q_2)}{\partial q_2} = -\frac{U_1}{U_2}$$

- So the slope of an indifference curve is equal to the ratio of marginal utilities (will become important later).
- If indifference curves are convex, so that the MRS is diminishing:
 - $|U_1/U_2|$ becomes smaller as we move down the curve.
 - As we get more q_1 each additional unit is worth less to us (so U_1 goes down).
 - As we get less q_2 each additional unit is worth more to us (so U_2 goes up).

Consider Lisa's utility function over pizzas and burritos, $U(q_P, q_B) = q_P^{0.5} q_B^{0.5}$. Which of the following statements is **true**?

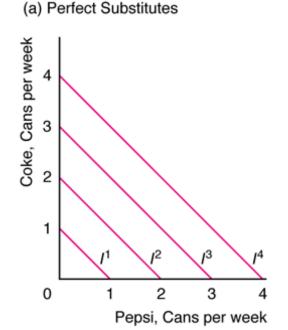
- A. Lisa prefers two pizzas and one burrito to one pizza and two burritos.
- B. The marginal utility of pizza is $U_P = 0.5q_P^{0.5}q_B^{-0.5}$.
- C. The marginal utility of burritos is $U_B = q_P^{0.5} q_B^{-0.5}$.
- D. The marginal rate of substitution between pizzas and burritos is diminishing.
- E. The marginal rate of substitution between pizzas and burritos is constant.

Examples of often-used utility functions:

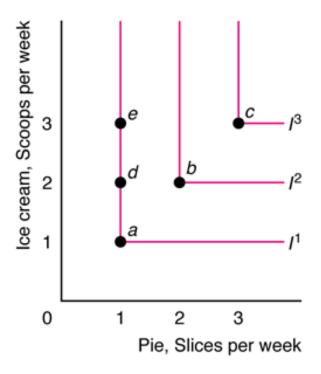
- Perfect substitutes
 - Goods that a consumer is indifferent about.
 - Examples: Coke vs Pepsi, mineral water, generic vs brand-name drugs ...

$$-\operatorname{U}(q_1,q_2) = iq_1 + jq_2$$

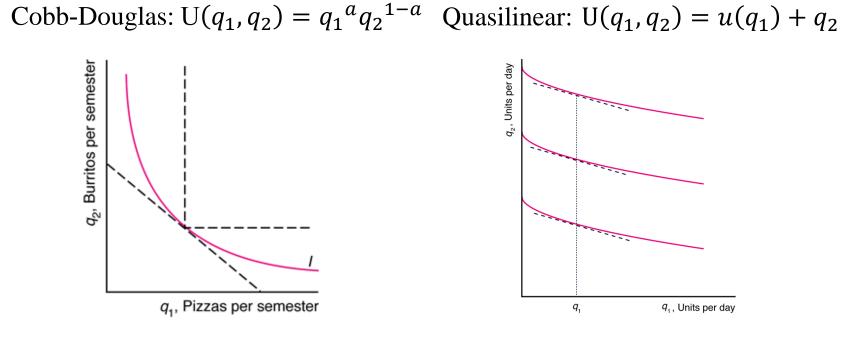
-MRS = i/j



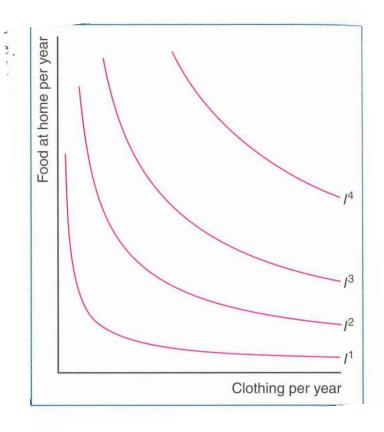
- Perfect complements
 - Goods that are consumed in fixed proportions.
 - Examples: iPods/headphones, apple pie/ice cream ...
 - $\operatorname{U}(q_1, q_2) = \min(iq_1, jq_2)$
 - MRS is not defined $(U_1 = 0, U_2 = 0, unwilling to substitute goods for each other).$



- Imperfect substitutes
 - Are between the extreme examples of perfect substitutes and perfect complements.
 - Many types of utility functions which yield standardshaped, convex indifference curves. Two examples:



Consider the indifference curves estimated by Eastwood and Craven (1981) for the average U.S. consumers over food consumption and clothing. Which of the following statements *does not* follow from the diagram below?



- A) We approach the case of perfect complementarity for low levels of consumption.
- B) Consumers become more indifferent between the two goods as they consume more of them.
- C) The fact that a minimum level of food and clothing is necessary to support life can help explain the shapes of the indifference curves.
- D) Consumers care less about food and clothing as they get richer.
- E) Food and clothing are imperfect substitutes in the diagram.

Summary & Learning Outcomes

- Utility functions allow a convenient mathematical representations of preferences.
- Utility functions and indifference curves can be used to model many types of goods (substitutes, complements ...).

Summary & Learning Outcomes

- Understand the nature of cardinal and ordinal utility functions.
- Understand the link between utility functions and indifference curves.
- Know the main types of utility functions and the associated indifference curves and MRSs.

Reading

- Perloff: chapter 3.2.
- Morgan, Katz and Rosen: chapter 2.2 (pages 40-43) and Appendix 3.A.1