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1. The Linear Regression Model, LRM

1.1. The model and estimators

Econometrics is mainly about estimating linear regression models from a sample
of data, explaining some dependent variable which may be cross-section, Y;, i =
1,2,...,N, or time-series, Y;, t = 1,2,...,T. or panel, Y;;, by some independent
variables. A cross-section bivariate regression model is of the form:

Y, = 51 +B2Xi‘|‘uia

and we wish to obtain estimates of the intercept, Bl and the slope 52 and of the
estimated errors u;. Notice we distinguish between the true, unknown values, like
B4, and our estimates from the sample f3;.

Consider the data from Gapminder. Y; is life expectancy in country ¢ and X;
is log dollar per-capita income, ¢ = 1,2, ..., 189. The scatter diagram and the fitted
line are shown below. There is a positive relationship, but it does not fit exactly
and there are clear differences from the fitted line. For instance the country with
the lowest life expectancy in the sample, Lesotho at 48.3 years, is not the poorest,
and given its per-capita GDP of $2,435, its predicted life expectancy is 64.6 years,
an estimated error of u; = —16.3. The poorest country in the sample, Somalia,
has an income of $616 and a life expectancy of 57.7, almost equal to the predicted
57.5.

84
80 .3 T --"-?: - :
76 A
72 ce U

68
64 Sl
60
56
52

486 7 8 9 10 11 12

Life expectancy against log per-capita income

The estimates of the relationship given by the program EViews are shown
below.
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Dependent Variable: LE
Method: Least Squares
Date: 01/31/18 Time: 11:26
Sample: 1189

Included observations: 189

Variable Coefficient Std. Error t-Statistic Prob.

C 24.27829 2.568390 9.452729 0.0000

LPCI 5.172650 0.279985 18.47472 0.0000

R-squared 0.646045 Mean dependentvar 71.28771

Adjusted R-squared 0.644152 S.D. dependentvar 8.050099

S.E. of regression 4.802125 Akaike info criterion 5.986520

Sum squared resid 4312.296 Schwarzcriterion 6.020824

Log likelihood -563.7261 Hannan-Quinn criter. 6.000417

F-statistic 341.3155 Durbin-Watson stat 2.176566
Prob(F-statistic) 0.000000

A similar time-series equation is of the form:
Yt :51+52Xt+ut (].].)

for t = 1,2,...,T. This is a set of T equations which explain observations on
a dependent variable, Y;, by an explanatory variable X; (which may be a non-
linear function of some other variable, e.g. the logarithm as above) and errors:
uy = Yy — B, — ByX;. Multiple regression, with £ explanatory variables takes the
form

Y, = B+ BoXor + oo + B Xkt + wy

where X7, = 1 all ¢. This can be written in vector form as:
Y, = B'X; +
where 5 and X; are k x 1 vectors. Or in matrix form as

=X 04+ u
Tx1 Txkpy Tx1

where y and u are T" x 1 vectors and X is a T' x k matrix. For the bivariate

regression, this is
}/1 1X1 U1
ANEE]
] o] La]
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We start with the following assumptions about the errors

E(u) = 0
EW?) = o?
E(utut_i) = 0, 7 7£ 0

Which can be written in matrix notation as

2
Uy Uiy .. ULUT
2
U2Uq u .. UUT
E(uu)=F 2 = oIy
uru, Urus .. U2

This is a 7' x T' matrix with 02 on the diagonal and zeros on the off-diagonals.
Distinguish uu’ a T' x T matrix and v'u = Y u? the scalar sum of squared errors.
In addition, we assume that the matrix of explanatory variables, X is of full rank
k, (in the bivariate case this implies that the variance of X, is non-zero), and
that the explanatory variables in X are either (a) non stochastic (b) exogenous,
distributed independently of the errors u; or (c) pre-determined, uncorrelated
with the errors ;. This implies that F(X'u) = 0; which in the bivariate case is
E(}> >, w) =0 and E(X;u;) = 0. Exogeneity is discussed in more detail below in
section 7.

We want to estimate the unknown parameters 3 and o%. We will use three
procedures to obtain estimators of the vector (3, 8. Estimators are formulae which
tell you how to calculate an estimate from a particular sample.

Method of moments chooses [ to make a property assumed to hold in the
population hold in the sample. Least squares chooses (3 to minimise  u?. Maxi-
mum Likelihood chooses the E most likely to have generated the observed sample.
It also requires an additional assumption about the conditional distribution of
y (distribution of u). In the case of the linear regression model with normally
distributed errors, the three procedures lead to the same estimator. This is not
generally the case.

1.1.1. Method of moments

To get the method of moment estimators we use the sample equivalents of E(u;) =
0 and E(X;u;) = 0 which are 771>, 4, = 0 and 7' Y, Xyuy = 0, where u;, =

Y — By — B Xy



The first moment condition is

TN G = T*Z(}Q—Bl—BQXt) Y -3, - B,X =
t t
Bl = ?—527

Use this to rewrite (1.1) in terms of the estimates
i = 314—32)(}—}-@:(?—527)—1—32)(}—1—@
Y;g—? - BQ(Xt—y)—i—ﬂt
Yo = Bori + Uy
where y; = Y; — Y and z; = (X; — X).

The second moment condition 77 Y, X;u; = 0 is equivalent to 7' >~ x,u; =
0 and

Tt Z vy, = T7F Z T (Y 523% Z T1Yr) 2(T_1 Z }) =
t t t

3, = (T30 waye) _ Cov(X,Yy)
’ (T13028)  Var(Xy)

as long as Var(X;) # 0.

For the general case, the method of moments estimator uses the sample equiv-
alent of F(X'u) = 0 which is X'u =0:

X% = X'(y—XB)=Xy—X'XB=0

B o= (X'X)'Xy
as long as (X'X) is non-singular, which is ensured by the assumption that the
rank of X = k.

1.1.2. Least Squares 1

The least squares estimator minimises S =Y, u?

S = Z( 233t ZytJrﬁngt 2622%%

8—§ = 2522% _zzl’tyt—o

> (Zt mltyt)
b = TS



as above. Note the second derivative is 23, z7 > 0, so it is a minimum.

To derive the least squares and maximum likelihood estimators for the general
case, we need the derivatives of vectors and matrices. To minimise u'u, which
is a function of the k elements of 3, we will need to take derivatives, getting %
derivatives with respect to each element of f3.

1.2. Differentiation with vectors and matrices

Consider the equation:

P=2z"a
Ixn nx1

Then the derivatives of P with respect to x and z’ are defined as :

dP dP
%:aand@: !
For n = 2:
P = [%1,$2]|:Z;:|
= I1a1 + T209
Then
dP_ addP—
dlL‘l_al . dIEQ_a2
So dpP
dP_ E . CLl .
wo B )=l
and
dP_ dP dP iy a]—a’
de!  |dry dxs| a1, G2} =

Consider the quadratic form:

Q=z'Azx

1xn nxnnx1

Then the derivative of Q with respect to x or 2’ is defined as :

@ = 2Ax and 4

dx @ = 233'/14



For n = 2, assuming A is symmetric for simplicity:

So:

Then

d@
dx

and

dQ

dz’

aQ
dﬂfl

|

ailr Aaig X1
= |T1,Z
Q [ 1, 2] |: 1y Q99 ‘| |: T :|

Q = [z1,] a11T1 + a12T2
- 1,42

1221 + Q22T
2
2

2
= a1 + 2@12[)’]11’2 + A29T

= 2@111’1 + 2(1121’2 and d_ = 2&121’1 + 2(122?[]2
L2

% _ | 200171 4 20197 _ 9| 0 i Z
ad 2a1271 + 2a2272 12 Q2 T2

dzy

2A x
2x22x1
dQ d
= —Q, —Q = [2@11I1 + 2@121’2, 2@12$1 + 2@221’2]
dl’l dlL’Q
a a
= 2lonl[ 2 02 |
= 2z'A
1x2 2x2

1.3. Least Squares 2

Consider the estimated linear regression model

= XB+ 74
T:g(l Txk ey Tx1

The problem is to choose B to minimize the sum of squared residuals:

1 = (y- XB)' (v XB) (1.2)
— yy—BX'y—yXB+3X'XB (1.3)
= yy—20X'y+ B XXB. (1.4)

7
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If Ais an xm matrix, and B is an m X k matrix the transpose of the product
(AB) is B’A" a k x n matrix the product of a k x m matrix with a m x n matrix.
A'B’ is not conformable. 3’ X 3 = ' X'y because both are scalars (1 X 1 matrices).
Scalars are always equal to their transpose. The term 3’ X’X 3 is a quadratic form,
i.e. of the form x’ Az above.

Using the rules above

ou'u ~
5 —2X'y+2X'XB=0 (1.5)

~

Bo— (X)X

as in the method of moments case. The second derivative is 2X’X which is a
positive definite matrix, so this is a minimum. Matrix, A, is positive definite
if for any a, a’Aa > 0. Matrices with the structure X’'X are always positive
definite, since they can be written as a sum of squares. Define z = Xa, then
Zz=dX'Xa=73z>0.

1.3.1. Bivariate case

Writing the sum of squared residuals u'u = Zthl u? out explicitly we get the three
terms as in (1.4)

DYE=2B ) Vit By ) XY)+ BT+ 53 ) X7 +26,8,) X (16)

you can see that the last term 3'X’X 3 in [..] is a quadratic.

In the bivariate model to minimise u'u we have to differentiate the sum of
squred residuals, (1.6) above, twice, with respect to 5, and 35, to get the 2 x 1
vector of derivatives and set them equal to zero. The two elements of the vector
are

%%“ =287 +26,) X, —2> ¥, =0 (1.7)
1

olu -

o5, =D XP+2B, 3 X -2 3 XXi=0 (18)

Check that this corresponds to the matrix formula (1.5). We can also write these
as

=2 (Vi —[By + B X)) = -2 =0
—QZXt ﬁ1+52Xt]) = —Qthﬂt:O
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So = (X'X)"'X"yis a 2 x 1 vector.
(X/X) — [ T ZXt:|

SX S X7
Xyt = 1 X XX
w0 _TZXE—@XH—Z?@ T ]

o | 1 [zw —z@}{zn]
P TY X- (LX)l -XX T > XY
/B _ ZXtQZYt—ZXtZXth
' TY X2 — (¥ X,)°
B _ — > Xi ) Y+ T XY,

TY X7~ (X X))

These can be expressed in more intuitive form. From the first equation (1.7)

5 - XY 52X
! T 2T

= ?—327

substituting for 31 in the second equation (1.8) can be written

B2ZXE+(?_32Y)ZXt—ZXth =
g2th(Xt ~X) =) XY, -Y) =

S XX -Y) Y - X)(Y-Y)

0
0

XX -X) S - X
Dividing top and bottom by T, this is the ratio of the estimated covariance of X}

and Y; to the estimated variance of X;.
Note that

Y-V -Y) = Y XY HTYX =) XY - ) VX
X Y, Y: X
= ZXth+TZT ZT —ZXtET —ZY,:ZT
= ) XY, -Y)




1.4. Distributional motivation for the LRM

Suppose we have a sample of data of observations on random variables Y; a scalar
and X; a k x 1 vector. The joint distribution of the random variables, Y;, X;,
(e.g. (1.10) below can always be written as the product of the distribution of Y;
conditional on X, e.g (1.13) below and the marginal distribution of X, :

Dj(Y;bXt; 0]) = DC(Y;S | Xt; 00>Dm(Xt; Hm) (19)

6; is a vector of parameters of the joint distribution, 6, of the conditional distri-
bution, 6,, of the marginal. Suppose that we regard the causality as going from
X; to Y;, then the parameters of interest are those of the conditional distribu-
tion of Y}, 6., which we will usually denote by . We can say that X; is weakly
exogenous if there is no information in the marginal distribution of X about the
parameters of the conditional distribution that we are interested in. Usually we
are only interested in the first two moments of the distribution, the conditional
expectation (the regression function) and the conditional variance, so in the LRM
the parameters of the conditional distribution which we will want to estimate are
0. =6 = (3,0?). Note this definition of exogeneity, which we return to in section
9, is in terms of the distributions of the observables Y;, X; not in terms of the
distribution of the unobservable u as in the definition of strict exogeneity that X
is independent of w.

Consider the case where Y; and X; have a joint normal (Gaussian) distribution,

SO:
Y;f I’Ly O’z Eyﬂc
(g e (1.10)

n, and X, = E;x are k x 1, 3, is k x k. Then the conditional expectation of Y;
is a linear function of X, :

E(Y, | Xy) = py + [B: 35, ] (X — p,)

We can decompose y; into two components, the systematic part given by the con-
ditional expectation and the unsystematic part, the error, which is uncorrelated
with X; from the properties of conditional expectations. The error is:

Ut:Yt—E<Yt|Xt):Yt_ﬁ/Xt

SO:
}/t :,B'Xt—i—ut; t= 1,2,...,T. (111)

10



If the random variables are jointly normally distributed and the observations are
independent, the conditional variance is a constant:

E(Y,—EY; | X)) =E@)=0"=0,— 2,5, 5, (1.12)

If the joint distribution of Y; and X, is normal, the conditional distribution is
also normal, and if the sample is independent we can write the distribution for an
observation:

DY, | Xu;0)~IN(B'X,, 0% (1.13)

_ 1Y, —pB'X,

— (9rg2)1/2 L P Aty

(2r0%) Poxp { -5 (=P

or in matrix form for the whole sample:
Dy | X:6)~ N(XB,0) (1.14)
1
— o) Pexp { ooy — X5 - X6) .

We do not need to specify conditional independence in the matrix form, the fact
that the variance covariance matrix is o2 implies that the conditional covariances
between Y; and Y;_; are zero. In the case of normally distributed variables zero
covariance implies independence, this is not generally the case, independence is a
stronger assumption than uncorrelated.

In the bivariate case:

E(Y; | Xi) = B1+ B X,

where 3, = p, — Bopix, and By = 04y/04e, Where 0, is the covariance of Y; and
X; and o,, the variance of X;. But we also have

E(X, ‘ Y;t) =7 +72Y:

where v, = iy — Yally, Vo = Ouy/0yy. Also Byyy = r?, the squared correlation
coefficient. Notice these two conditional expectations need not have a causal
interpretation. If Y; was height and X, weight; we could sensibly ask both what
is the expected weight of someone of a particular height and what is the expected
height of someone of a particular weight, without implying one caused the other.
For prediction we do not need any exogeneity assumptions but to make causal
statements we do.

11



2. Maximum Likelihood estimation

2.1. Introduction

Suppose we have a random variable y with a known probability density function
f(y,0), where 6 is a vector of parameters (e.g. mean (expected value) and vari-
ance). We can use this formula to tell us the probability of particular values of
y, given known parameters. For instance, given that a coin has a probability of
getting a head of p = 0.5, what is the probability of observing 10 heads in a row?
Answer (0.5)'°. Alternatively, we can use the same formula to tell us the likelihood
of particular values of the parameters, given that we have observed a sample of
realisations of y, say y1, s, .., yr: Given that we observe ten heads in a row, how
likely is it that this sample would be generated by an unbiased coin (i.e p = 0.5)7
Again the answer is (0.5)!°. In the first case we interpret f(y,#) as a function of
y given 6. In the second case we interpret f(y,#) as a function of 6 given y. The
maximum likelihood (ML) procedure estimates 6 as the value most likely to have
generated the observed sample. In the coin example, p = 0.5 is very unlikely to
have generated the observed sample of 10 heads. If the sample is random, the
observations are independent and we can just multiply the probabilities for each
observation together as we did in the coin example and write the Likelihood as:

L) = f(y1,0)f(y2,0)...f(yr,0)

We then choose 6 that maximises this value for our observed sample ¥, ya, ..., yr.
It is more convenient to work with the logarithm of the likelihood function. Since
logs are a monotonic function the value of # that maximises the log-likelihood will
also maximise the likelihood. Thus the log-likelihood is:

LL(6) = log f (1, 0).

To find the maximum we take the derivatives of LL(f), and set them to zero:

Gy _ OLL(®) _ 93 log f(y.0)

5(0) o0 o0 =0

then solve for the value of 0,5 that makes the derivatives equal to zero. Notice

that LL(0) is a scalar function of 0, and if 6 is a k& x 1 vector, 8L8Le(6) will be

a k x 1 vector of derivatives. S(f) is often called the Score vector. For simple
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examples, like the LRM below we can solve these equations analytically, for more
complicated examples we solve them numerically. To check that we have found
a maximum, we need to check the second order conditions and calculate the kxk
matrix of second derivatives:

O?LL(0)

00 00"’

evaluated at the true #. For a maximum this matrix should be negative definite.
The information in observation ¢ is the negative of the expected value of the matrix
of second derivatives:

PLL(),
90 00’

which is a symmetric k£ x £ matrix. The average information matrix in the sample
of size T is:

[t(e) = _E(

F(0) = 3 Y 0) = ~ B o )

A useful result is that for any unbiased estimator (in small samples) or consistent
estimator (asymptotically when 7" — o00) the inverse of the information matrix
provides a lower bound (the Cramer-Rao lower bound) on the variance covariance
matrix of the estimator

V() > 1(6)".

where > indicates that V(b\) —1I (5)*1 is a non-negative definite matrix.
Under certain regularity conditions the ML estimator # is consistent, that is
for some small number € > 0

A P00 =0,
When we evaluate asymptotic distributions we look at /7T (5 —0) as T — o0, be-
cause since it is consistent the distribution of 0 collapses to a point and scale the
information matrix by 7. The ML estimator is asymptotically normally distrib-
uted and asymptotically attains the Cramer-Rao lower bound (i.e. it is efficient),
it is asymptotically

VT(lr —6) — N(0,1(0)7Y),
- g G

T — oo

).
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The scaled score (v/T)~1.S(6) is also asymptotically normal N (0, I(6)). We will use
these two asymptotic normality properties in testing. In addition, E(S(0)S(0)") =
T x 1(0).

ML estimators are Aalso invariant in that for any function of 0, say ¢(#), the ML

estimator of g(#) is g(#). Partly because of this ML estimators are not necessarily
unbiased. Some are, many are not.

2.2. Non-linear estimation

For the LRM with normal (Gaussian) errors considered below, the ML estimator
has a closed form solution. For many of the models we will consider (MA errors,
GARCH, Johansen) this is not the case. In such cases one typically requires some
sort of iterative procedure to obtain estimates.

Consider maximising a quadratic function of a vector of k£ parrameters 6, where
C is a positive definite matrix

1
F(0)=a+b'0 - -6'Co

the first order conditions for a maximum and the closed form solution are
OF(0)
— = b-CO=0
00
0 = C'b.

If F(0) is the likelihood function, or GMM minimand, for a non-linear model,
estimation is usually done using an interative algorithm, where starting from some
initial guesses, 6y the estimates are updated as

0t+1 = 075 + AtAt (21)

where ); is the step size and A; the direction and this continues until it converges
to a maximum.

The most commonly used algorithms are gradient methods..Define the gradient
and Hessian

0F(0) 0?F(0)
=9g0)=—— H= ——-.
The simplest gradient method is Newton’s method based on a linear Taylor series
expansion around 6
oF (0
% ~ go+Ho(0 —0)) =0
0 ~ 00 — Halgg.

14



In (2.1) this sets \; = 1 and A, = H, 'g;. This often works well, but may be
improved by adjusting );. It may be difficult to calculate H; ' and it may not

be positive definite. In ML examples the outer product gradient, OPG, method
-1

uses [ZtT:l gtgg] instead of (—H)~!. This is always positive definite and only

requires calculating first derivatives. It is the basis of BHHH, Berndt, Hall, Hall

& Hausman.

2.2.1. Issues

Thus the issues are: where you start, how you climb up hill and when you stop.

e Start: Try to choose sensible initial values, 6, e.g. based on linear approx-
imations and try different values to check for local maxima.

e Climb depends on choice of A\; and A;, programs will often switch between
procedures. You can choose between 4 in Stata for GARCH.

e Stop: determining whether it has converged to a maximum. g; < ¢, .and
Fy, — F,_1 < € are sensitive to scaling, the units the variables are measured
in, g’H!g is less sensitive. In Stata GARCH you can set tolerances, ¢, for
the coefficients, log likelihood and Hessian scaled gradient.

e Whereas in the linear case if the parameter is not identifed because X'X
is singular, it will be obvious, you get no estimates. This may not be so
obvious in the non-linear case and the program may provide estimates even
if the likelihood is very flat. This may occur if one has not identified the
right sort of non-linearity.

For less well behaved functions there are algorithms like simulated annealing
and genetic algorithms.
2.3. ML estimation of the LRM

For the LRM, the likelihood of the sample is given by (1.14) above, but now
interpreted as a function of § = (3,¢?), the unknown parameters:

1
L 2y — (2752)"T/2 _
(8.0%) = (2n0*) " exp{ —

<y—Xﬂﬂy—Xm}.
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The Log-likelihood function is :

1
202

LL(3,0) =~ log(2) — - 10s(0®) 5 5y — XB)(y — X5).

2

and to find the estimates that maximise this we differentiate it with respect to 3
and o2 and set the derivatives equal zero. Notice that

vu=(y—XpB)(y—XB)=yy+FX'X5-20X"y.

When we transpose we reverse the order to maintain the correct dimensions and
B' X'y =y’ X 3 because both are scalars. Thus:

OLL(B, o> 1 , ,
ég ) _ —55(2X'X B —2Xy) (2.2)
and OLL(B,0?) T 1
70 /
T o2 22zt 23)

The derivative with respect to o2 of log(c?) is 1/0? and of —1/20% = —(20%)7 ! is

(~1)(~(20%)2).

Setting (2.2) equal to zero gives one First Order Conditions, FOC
1 .
1 ~
—X'y—-X'Xp) = 0
o

where the hats denote that these are the values of 5 and ¢? that make the FOCs
equal to zero. Notice that this can be written

1 ~ 1,
g g

the first order conditions choose [ that makes the estimated residuals, v = y—X /B,
uncorrelated with (orthogonal to) the explanatory variables. This estimate is

B=(X'X)"Xy.

Notice that we need X to be of full rank for the inverse of (X'X) to exist. If

~

(X'X) is singular, (8 is not defined. This is called exact multicollinearity.

16



Setting (2.3) equal to zero gives

T . 1,
——= wu =
262 25t

multiply through by 25*
~T5” +@Wu =0

so our maximum likelihood estimator of the variance is:

T

The ML estimator is biased and we usually use the unbiased estimator s? =

wu/(T — k).
To check second order conditions and construct the information matrix we
take derivatives of (2.2) and (2.3)

OLL(B, 0?) 1

srop = XX (2.5)
O?LL(B,0?) 1,

Notice the derivative of (62)"'X"u is —(0?) 2 X'u. Finally

O*LL(B, o> T !

TLLB07) T _wu (2.7)
J(02)? 204 oS

To get the information matrix we take the negative of the expected value of the

second derivative matrix. Notice that E(X'u) = 0, F(u'u) = To? so the expected

value of the final second derivative can be written:

T To? T T T

204 ob 204 ot 204

I(Q):_E((??LL(H))_{%)SX g}

0000 "
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This gives the lower bound for the Variance-covariance matrix for estimators of
f3,0%. Notice that the estimators of § and o? are independent, their covariances
are zero. But there will be non-zero covariances between the elements of /3.

We can put the ML estimates into the Log-likelihood function, to get the
Maximised Log-Likelihood, MLL, reported by most programs

T T 1
MLL = —=log(27)— = log(c*) — —u'u
2 2 25
T T o 1T3°
= 3 log(2m) — ) log(c”) — _282

_ —g(log(Zﬁ) +1)— glog@?)

apart from the constant this is just the negative of half the sample size times the
log of the ML estimate of the variance. This can be negative or positive.

2.4. Properties of the ML estimators in the LRM

General asymptotic properties of ML estimators were discussed above, to derive
the specific small sample properties of the LRM estimators we will use two results
repeatedly.

Firstly, linear functions of normally distributed variables are normally distrib-
uted. If y is IN(u,0?) then a + by is N(a + bu, b*c?). The multivariate generali-
sation of this is that if the T' x 1 vector Y ~ N(M, X)), where M is T x 1, ¥ is a
T x T variance covariance matrix. Then for given A and B of order K x 1 and
K xT:

A+ BY ~ N(A+ BM, BXB'). (2.8)

Secondly, quadratic forms (sums of squares) of standardised normally distrib-
uted variables are Chi-squared. So

i (‘% — “)2 ~X*(T)

t=1

and for the T' x 1 vector Y ~ N (M, ), then:
(= MYS (Y = M) ~ 3(T) (2.9

distributed as Chi-squared with 7" degrees of freedom.
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2.4.1. Regression Coefficients

To return to the LRM, where y is a 7" x 1 vector and X is a T x k full rank matrix
of exogenous variables, then conditional on X, since

y ~ N(XB,0%I)

and the ML estimator is R
B=(X'X)"X"y

a linear function of y, 3 is normally distributed using (2.8):

B~ N{X'X)'X'XB, (X'X)'X'(c*) X (X'X)""}
~ N{B,0*(X'X)""}

~ ~

This indicates (1) /5 is unbiased, E(8) = 3, (2) it is fully efficient, its variance co-
variance matrix attains the lower bound obtained above o?(X’'X)~1. We generally
estimate the variance covariance matrix by s?(X’'X)~!, where s*> = u'u/(T — k),
the unbiased estimator. The square roots of the diagonal elements of this ma-
trix give the standard errors of the individual regression coefficients, e.g. 3, and
the off diagonal elements give the covariances between regression coefficients, e.g.

COU(BZ', ﬁ])

2.4.2. Residuals

The estimated residuals are uncorrelated with the explanatory variables by con-
struction: R

Xu=X'(y—-Xp)=X'(y— X(X'X)'X'y) =Xy - X'y =0.

X'u is a set of k equations of the form:

T T T
Z@t = O, ngfﬂt = O, ey Zl‘ktat =0.
t=1 t=1 t=1
In addition:
nw=y— XA = y— X(X'X)'X'y=(UI-X(X'X)'X" )= (I - P,y = My.

P, is a ‘projection matrix’ it is symmetric and idempotent (P, P, = P,) and
orthogonal to M, (P,M = 0), which is also symmetric and idempotent. So

y= Py + My
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it is split into two orthogonal components, the projection of y on X and the
orthogonal remainder.

Notice that the estimated residuals are a transformation of the true distur-
bances:

)

= [-X(X'X)"'X")y=(0I-X(XX)""X")(XB+u)
= (I-X(X'X)"'X")u = Mu.

We cannot recover the true disturbances from this equation since M is singular,
rank T-k. The sum of squared residuals is:

T
> 4 =0 =u'MMu=u'Mu.
t=1

To calculate the expected value of the sum of squared residuals, note that w'u is

a scalar, thus equal to its trace, the sum of its diagonal elements. Thus using the
properties of traces we can write

E(@7u) = E@'Mu)=E(tr(udMu)) = E(tr(Muu'))
= tr(Mo?l) = o*tr(M) = o*(T — k).

Thus the unbiased estimate of 02 is s* = @4 /(T — k). The last step uses the fact
that the Trace of M is

tr Iy - X(X'X)7'X'] = tr(Iy) —tr (X(X'X)'X')
= tr(Ir) —tr (X'X)7'X'X)
= tr(ly) —tr(Ig) =T — k
The sum of squared standardised original disturbances v'u/c? are distributed as
X*(T), but the sum of squared standardised residuals W'u/0? = ' Mu/o? are
2(rankM) = x*(T — k). Alternatively

82

(T = k) (=) ~ X (T = k).

o2
2.5. What happens when assumptions fail
2.5.1. Rank(X)# k

If X is not of full rank k, because there is an exact linear dependency between
some of the variables, the OLS/ML estimates of 5 are not defined and there is
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said to be exact multicollinearity. The model should be respecified to remove the
exact dependency. When there is high, though not perfect, correlation between
some of the variables there is said to be multicollinearity. This does not involve a
failure of any assumption.

2.5.2. u not Gaussian

If normality does not hold the Least Squares estimator, B = (X'X)"' X"y, is no
longer the Maximum Likelihood estimator and is not fully efficient, but it is the
minimum variance estimator in the class of linear unbiased estimators (biased or
non-linear estimators may have smaller variances). In small samples, the tests
below will not have the stated distributions, though asymptotically they will be
normal, because of the central limit theorem. If the form of the distribution is
known (e.g. a t distribution) maximum likelihood estimators can be derived for
that particular distribution and they will be different from the OLS estimators.
EViews and Microfit will estimate model with errors distributed as t, under the
GARCH options, see the applied exercise. For small degrees of freedom, the t has
fatter tails, when the degrees of freedom are aound 30 it is close to normal.

2.5.3. E(uu') # %I

If Var(y | X) = E(uu’) = 09, that is its variance covariance matrix is not o1,
there are two possible problems: the variances (diagonal terms of the matrix) are
not constant and equal to o2 (heteroskedasticity) and/or the off diagonal terms,
the covariances, are not equal to zero (failure of independence, serial correla-
tion, autocorrelation). Under these circumstances, B remains unbiased but is not
minimum variance (efficient). Its variance-covariance matrix is not o(X’X)™1,
but o?(X'X) 1 X'QX(X'X)~1. Corrected variance-covariance matrices are avail-
able in most packages (White Heteroskedasticity consistent covariance matrices
or Newey-West heteroskedasticity and autocorrelation consistent, HAC, ones).
These use estimates of X’Q2.X in the formula. Use Options on the equation menu
in EViews to get HAC robust standard errors. Notice that residual serial correla-
tion or heteroskedasticity may indicate not that there is some covariances between
the true disturbances but that the model is wrongly specified, e.g. variables are
omitted, see below. When it is appropriate to model the disturbance structure
in terms of €2, Generalised Least Squares, discussed below, can be used. Often
residual serial correlation or heteroskedasticity should lead you to respecify the
model rather than to use Generalised Least Squares.

21



2.5.4. X not exogenous

If the X are not strictly exogenous, independent of u, the estimates of 3 are biased,
though if the X are predetermined, uncorrelated with u, (e.g. lagged dependent
variables where the disturbance term is not serially correlated), they will remain
consistent. Otherwise, the estimator will be biased and inconsistent. Even if the
exogeneity assumption fails least squares gives the best (minimum variance) linear
predictor of y.

In certain circumstances endogeneity, the failure of the exogeneity assumptions
can be dealt with by the method of Instrumental Variables discussed below in
section 7. There are three man causes of endogeneity, two of them simultaneity
and measurement errors in the independent variable are discussed in section 7,
the third omitted variables. is considered now.

Omitted variables Suppose the data are generated by
Ye = a + Bry + vz + uy (2.10)
and you omit z;, a h X 1 vector and estimate
yr = a + bxy + vy (2.11)

What is the relationship between the estimates? Suppose we describe the relation
between the omitted and included right hand side variables by the regression:

2 = ¢+ dxy + wy (2.12)

We can always do this, if they are unrelated d = 0. If you replace z; in (2.10) by
the right hand side of (2.12) you get:

Yy = a+ Bxy + y(c+ doy +wy) + uy

yr = (a+y¢) + (B + 7' d)xy + (ywe + uy).

Thus b = (5 + vd) and v; = (yw; + u;). The coefficient of z; in (2.11) will only
be an unbiased estimator of /3, the coefficient of z; in (2.10) if either v = 0
(2 really has no effect on y;) or d = 0, (there is no correlation between the
included and omitted variables). Notice that v; also contains the part of z; that
is not correlated with z;, w;, and there is no reason to expect w; to be serially
uncorrelated or homoskedastic. Thus misspecification, omission of z;, may cause
the estimated residuals to show these problems. This generalises easily to x; and
2 being vectors.
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2.5.5. Generalised Least Squares
If y ~ N(X3,0%Q) its distribution is given by:

21~ T/2 | 520 |71/ exp {_%(y - XB)(a*Q) (y — Xﬁ)} ‘

Notice that when © = I, then the term in the determinant, | 02Q |~%/2 is just
( 02)—T/2.

If ©2 is a known matrix the Maximum Likelihood Estimator is the Generalised
Least Squares estimator f““° = (X’Q~1X)~1X'Q 'y, with variance-covariance
matrix V(8%%) = ¢?(X'Q ' X)~'. Whereas the OLS estimator chooses 3 to make
(0®)7'X'u = 0, the GLS estimator chooses 3 to make (0%)"'X'Q "' = 0, where
U=y — XBS. In practice GLS is implemented by finding a ‘transformation
matrix’ P such that P’/P = Q! and PQP’ = I. This can always be done since
2 must be a positive-definite symmetric matrix. You then transform the data by
premultiplying the equation by P

Py=PXp+ Pu

where y* = Py, etc. OLS is then applied to the transformed data, which is fully
efficient since

E(u*u*) = E(Puu'P') = PE(w/)P' = P(a*Q)P' = ¢>PQP = o1,

In practice, §2 is rarely known completely, but it may be known up to a few
unknown parameters. These can be estimated and used to form an estimate of €2,
and P. This is known as the Feasible or Estimated GLS estimator. It generally
differs from the exact ML estimator. The text books give large number of examples
of FGLS estimators, differing in the assumed structure of {2. But in many cases
it is better to respecify the model or correct the standard errors than to apply
FGLS to try and fix problems with the residuals.

3. Testing

3.1. Introduction

Suppose that we have prior information on ¢, which suggests that elements of the
parameter vector take specified values, such as zero or one or are linked by other
restrictions, and we wish to test this hypothesis. A test involves:
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(a) a null hypothesis usually called Hy; e.g. for a scalar parameter: Hy : 3 = 1;

(b) an alternative hypothesis, e.g. H; : § # 1, this is a two sided alternative,
a one sided alternative would be § < 1;

(c) a test statistic, which does not depend on the true value of the parameters
(is pivotal), (e.g. (B — 1)/SE(B), where SE(f) is the estimated standard error
of B) with a known distribution when the null hypothesis is true (e.g. a central t
distribution);

(d) a specified size «, the chosen probability of Type I error (rejecting Hy when
it is true) usually 0.05;

(e) critical values so that if the null hypothesis is true the probability of lying
outside the critical values is «;

(f) a power function which gives the probability of rejecting the null as a
function of the true (unknown) value of 5. The power of a test is the probability
of rejecting Hy when it is false (one minus the probability of type two error).

The procedure is: to not reject Hy if the test statistic lies within the critical
values and to reject Hy if the test statistic lies outside the critical values. Notice
that rejecting the null does not mean accepting the alternative. The results can
also be presented as p values, which can be (very loosely) thought of as giving
the probability that the hypothesis is true.! If the p value is small, less than
the chosen size (probability of rejecting null when true), e.g. 0.05, then the null
hypothesis is rejected.

The test asks whether the difference of the estimate from the null hypoth-
esis could have arisen by chance, it does not tell you whether the difference is
important, therefore you should distinguish substantive (economic) importance
from statistical significance. A coefficient may be statistically significant because
it is very precisely estimated but so small as to be of no economic importance.
Conversely the coefficient may be large in economic terms but have large standard
errors so not be statistically significant. The test statistic and p value are condi-
tional on the model and data used. It is also useful to think of a test as informing
a decision, accepting or rejecting the null and considering the costs of the two
sorts of mistakes. The costs can be embodied in some form of loss function or
utility function.

!The American Statistical Association has a statement on p values and significance testing,
since they are very often misunderstood. They say "Informally, a p-value is the probability
under a specified statistical model that a statistical summary of the data (for example, the
sample mean difference between two compared groups) would be equal to or more extreme than
its observed value."
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3.2. Exact Tests

In the LRM with linear restrictions we can derive exact small sample tests. Sup-
pose, our null hypothesis is a set of m linear restrictions of the form RS = q or
RS — q = 0, where R and ¢ are known and of order m x k£ and m X 1 respec-
tively. The unrestricted model has k parameters, the restricted model k-m, each
restriction reduces the number of parameters we estimate. In the case where m=k,
all the parameters are specified, R is an identity matrix and the restrictions are
f=q

Since R

B~ N(Bo(X'X))
and the restrictions are linear
(RB—4q) ~ N(RS —q.0°R(X'X)"'R))
Under Hy: RB—q=0
(RB—q) ~ N(0,0°R(X'X)"'R')

and

(RS — q)'[0’RIX'X)'RTHRB —q) ~ x*(m).
Notice that this is a special case of the Wald test statistic below and is of the
same form. This is not yet a test statistic because it depends on the unknown a2,

but we know (T — k)s?/0? ~ x*(T — k) and that for independent Chi-squares:

x*(m)/m
AT -Ryr—g ~FmTR
N (R = /[P ROCX) RV (BB —a)fm
(T — B)2/oT/(T — k) Flm, T =F)
or since the two unknown o? cancel:
(F3 = RXX) RIS =m0

52
This provides us with a test statistic. In practice it is easier to calculate it from

another way of writing this formula. Define the unrestricted and restricted esti-
mated equations as

y:XB—l—ﬁ; and y = Xp" +u*
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then R
(uu* —u'u)/m

7 /(T — k)

the ratio of (a) the difference between the restricted and unrestricted sum of
squared residuals divided by the number of restrictions to (b) the unbiased esti-
mate of the unrestricted variance. Computer programs automatically print out
a test for the hypothesis that all the slope coefficients in a linear regression are
zero, thisis F'(k — 1,7 — k).

~ F(m,T — k),

3.3. Asymptotic Tests

When we cannot derive exact, small sample standard errors or critical values for
our tests, we often use aymptotic approximations using the central limit theorem
to get asymptotic distributions. For instance, for t ratios the asymptotic distrib-
ution is normal with 5% critical value of 1.96 whereas for 10 degrees of freedom
the exact critical value is 2.23. So we are more likely to reject using the asymp-
totic approximation. There are also numerical procedures called "bootstrapping"
which use simulations to provide better small sample approximations for standard
errors and critical values.
We saw above that the ML estimates are those which maximise LL(6), i.e. the
5, which make
OLL(0)
00
where § (5) is the score vector, the derivatives of the LL with respect to each of
the k elements of the vector # evaluated at the values, 5, which make S(0) = 0.
We will call these the unrestricted estimates and the value of the Log-likelihood
at 0, LL(0).
Suppose theory suggests m < k prior restrictions (possibly non-linear) of the
form R(6) = 0, where R(f) is an m x 1 vector. If m = k, theory specifies all the
parameters and there are none to estimate. The restricted estimates maximises

=S(@) =0

£ =LL(0) — NR(0)

where X is a m x 1 vector of Lagrange Multipliers. The first order condition, FOC,
is

0£ OLL() OR(H)
20— o0 a0

A=0
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Write the kz1 vector OLL(0)/00 as S(0) and the k x m matrix OR(0)/00 as F(0)
then at the restricted estimate 6%, which makes the FOC hold

S(07) — F(0)\ =0

Notice that at 6" the derivative of the Log-likelihood function with respect to the
parameters is not equal to zero but to F(0*)\*. The value of the Log-likelihood
at 0* is LL(6*) which is less than or equal to LL(6).

If the hypotheses (restrictions) are true:

(a) the two log-likelihoods should be similar, i.e. LL(@) — LL(6) should be
close to zero; R

(b) the unrestricted estimates should satisfy the restrictions R(¢) should be
close to zero (note R(0") is exactly zero by construction);

(c) the restricted score, S(6*), should be close to zero (note S(6) is exactly
zero by construction) or equivalently the Lagrange Multipliers A* should be close
to zero, the restrictions should not be binding.

These implications are used as the basis for three types of test procedures.
The issue is how to judge ‘close to zero’? To judge this we use the asymptotic
equivalents of the linear distributional results used above in the discussion of the
properties of the LRM. Asymptotically, by the central limit theorem, the ML

estimator is multivariate normal
6a N@O,1(0)Y)
asymptotically the scalar quadratic form is chi-squared
G- 0)Y16)(0 - 0) @ ().
and asymptotically R(f) is also normal
R(0) @ N(R(0), F(0)'1(0)" F(9))

where F'(§) = OR(0)/00. This gives us three procedures for generating asymptotic
test statistics for the m restictions Hy : R(6) = 0; each of which are asymptotically
distributed x?(m), when the null hypothesis is true:

(a) Likelihood Ratio Tests

LR = 2(LL(0) — LL(6")) ~ x*(m)
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(b) Wald Tests

W = R(O)'[F(0)'T(0)" F(0)] " R(6) ~ x*(m)

where the term in [...] is an estimate of the variance of R(6) and F(0) = 0R(6)/00.
(c) Lagrange Multiplier (or Efficient Score) Tests where OLL(6)/00 = S(0)

LM = S(6°)I(60")1S(6%) ~ x2(m).

The Likelihood ratio test is straightforward to calculate when both the re-
stricted and unrestricted models have been estimated. The Wald test only re-
quires the unrestricted estimates. The Lagrange Multiplier test only requires the
restricted estimates. For the LRM, the inequality W>LR>LM holds, so you are
more likely to reject using W.

In the LRM, the LM test is usually calculated using regression residuals as
is discussed below under diagnostic tests. The Wald test is not invariant to how
you write non-linear restrictions. Suppose m = 1, and R(0) is 6,05 — 65 = 0.
This could also be written 0, — 03/03 = 0 and these would give different values of
the test statistic. The former form, using multiplication rather than division, is
usually better.

3.4. Model Selection Procedures

Hypothesis tests require the two models being compared to be ‘nested’: one model
(the restricted model) must be a special case of the other (the unrestricted or
maintained model). In many cases we want to compare ‘non-nested” models, e.g.

M, : y= a1+ bz + upe
My : y = as + cozp + Uy

where x; and z; are different scalar variables. There are no restrictions on M; that
will give M, and vice-versa. We could nest them both in a general model:

M3 PYr = as + ngt + C32¢ + Ust-

The restriction c3 = 0 gives M;; so rejecting the restriction c3 = 0 rejects M;
The restriction b3 = 0 gives Ms; so rejecting the restriction b3 = 0 rejects M.
This gives four possible outcomes:

1. Reject M;, do not reject My : c3 # 0;b3 = 0;
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2. Reject Ms, do not reject My : bg # 0;c3 = 0;
3. Reject both; b3 # 0; ¢35 # 0;

4. Do not reject either: b3 = 0;¢c3 = 0.

There are a range of other non-nested tests available (Microfit has a large
selection) but they all give rise to the same four possibilities. If z; and z; are
highly correlated case 4 is quite likely. Notice that these are based on individual
tests (t tests), joint tests may give conflicting answers. On individual tests we
could reject both the hpothesis b3 = 0; and c¢3 = 0, i.e. both have significant t
ratios, but we could not reject the joint hypothesis that they are both equal to
zero. Conversely, they could be individually insignificant but jointly significant.

An alternative approach is not to test but to choose the ‘best’ model on some
‘model selection’ criterion. As with British newspapers, the most popular are the
worst. The most popular are R? and R’. Treat them with the scepticism you
would give to a story in the Sun.

Better criteria for choosing between various models are the Akaike Information
Criterion (AIC; = MLL; — k;); and the Schwarz Bayesian Information Criterion
or Posterior Odds Criterion (SBC' = MLL; — 0.5k;log T'); where M LL; is the
maximised log likelihood of model i, k; is the number of parameters estimated in
model i, and T is the sample size. You choose the model with the largest value.
The SBC tends to choose a more parsimonious model (fewer parameters).

About half of statistics programs (including Microfit) define the AIC in this
way, in which case you choose the model with the largest value. The other half
(including EViews and Stata) use—2 times these values in which case you choose
the model with the smallest value. Be careful, which way they are defined.

These and other model selection criteria can be used both for nested or non-
nested models. When comparing nested models the BIC can be interpreted as
adjusting the size of the test (probability of type I error) with the number of
observations. Suppose we have two models, M1 and M2, such that M1 has k
parameters and is nested in M2 which has an extra variable and £+ 1 parameters.
An LR test at the 5% level chooses M2 if 2(M LLy — MLL,) > 3.84. The BIC
chooses M2 if 2(M LLy — M LLy) > 1InT.
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4. Diagnostic Tests

The estimates one gets of a model are only valid if a number of assumptions hold
and it is important to test those assumptions. Such tests are called diagnostic or
misspecification tests. Failure on a particular diagnostic test (rejection of the null
that the model is well specified) only indicates that the model is sick, it does not
tell you what the illness is. For instance, if you have chosen the wrong functional
form you may fail tests for serial correlation. Apart from the structural stability
tests most of these tests are Lagrange Multiplier tests which involve auxilliary
regressions using the residuals from the first stage regressions. These tests ask
whether the residuals have the properties we would expect if the assumptions
were true. The null hypothesis is always that the assumptions are true, the model
is well specified. Thus if the p value for the test is greater than 0.05, you can
accept the hypothesis that the model is well specified at the 5% level.

There are a very large numbers of these tests for serial correlation and non-
linearity, which use the residuals as the dependent variable; for heteroskedasticity,
which use the squared residuals as the dependent variable; and for normality
which check that the third and fourth moments of the residuals have the values
they should have under normality. For each null, e.g. constant variance (ho-
moskedasticity) there are a large number of different alternatives (ways that the
variance changes) thus lots of different tests for heteroskedasticity of different
forms. Although the justification of these tests is asymptotic, versions which use
F tests and degrees of freedom adjustment seem to work well in practice. In Mi-
crofit four of these tests are provided automatically in EViews they are available
on the View menu after a regression. See the applied exercise for details. Always
inspect graphs of actual and predicted values and residuals.

4.1. Structural stability

The assumption that the parameters are constant over the sample is crucial and
there are a variety of tests for constancy. Two are special cases of the F test for
linear restrictions above.

Suppose that we have a sample of data for ¢t = 1,2,...,7 and we believe
that the relationship may have shifted at period 77 within the sample, and both
sub-samples have more than k£ observations. The unrestricted model estimates
separate regressions for each sub period ¢t = 1,2,...,77 and for t = Ty + 1,77 +
2,...,T7; define T, =T — Ty: Xy a Ty x k matrix, X, a Ty X k matrix, etc. Then
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the models for the two subperiods are:

yi = XqfBi+wm
Yo = XofBy+ us

where we assume u; ~ IN(0,02%), i = 1,2; the variances are the same in both
periods. The unrestricted residual sum of squares is (u)u; + ubus) with degrees
of freedom 1" — 2k. The restricted model is

y=XB+u

where X is a T' x k matrix. The restricted residual sum of squares is u'u with
degrees of freedom T" — k. The null hypothesis is that 3, = (,, k restrictions and
the test statistic is

[wu — (uyuy + uyts)]/k

~ F(kT —2k).
@+ )T — o)~ FT =2

This is known as Chow’s first or breakpoint test. He also suggested a second
‘predictive failure’ or forecast test for the case where there T, < k though it can
be used whether or not there are enough observations to estimate the second
period model. The test statistic is:

(W — wyn)]/Ts
uyuy /(Ty — k)

~ F(TQ,Tl - k?)

This tests the hypothesis that in

HEERIEEN

0 the T} x 1 vector of forecast errors are not significantly different from zero. This
has a dummy variable for each observation in the second period.
Chow’s first test assumes that the variances in the two periods are the same.
This can be tested using the Variance Ratio or ‘Goldfeld-Quandt’ test:
2 o

s wyuy /(Th — k

g # ~ F(Ty — k, Ty — k).

s5  ubus/(To — k)
You should put the larger variance on top so the F statistic is greater than unity.
Notice that although this is an F test, it is not a test of linear restrictions on
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the regression parameters like the other F tests we have used. This is a test for
a specific form of heteroskedasticity, tests for other types of heteroskedasticity
are given below. If the variances are equal, the two equations can be estimated
together using dummy variables

| _ | X1 O b1 |

Y2 0 X 52 Uz
this will give the same estimates of the coefficients as running two separate regres-
sions, but different estimators of the standard errors: this form imposes equality

of variables, the separate regressions do not. For testing differences of individual
coefficients, this can be rewritten

n X; 0 B1 Uy
— + ) 4.1
{92] {XQ X2:||:62_51 (1 (4.1)
Then some coefficients can be allowed to differ and others kept the same between
periods. For instance, suppose that £ = 3, and we define a dummy variable

D2 =1 for period 2, zero for period one; then (4.1) is equivalent to estimating on
the whole period

yt == 511 + /Blszt + B13x3t + 71D2t + 72D2t$2t + 73D2t$3t + Ut,

where 7, = Sy = B115 72 = Bag = Bra; V3 = Pz — Fi3.; Then if Hy : 7, = 73 = 0 was
not rejected, you would just need to include the dummy variable for and intercept
shift and not the two interaction terms.

Packages like EViews also include a range of other ways to investigate struc-
tural stability of the parameters using recursive residuals such as the CUSUM and
CUSUMSQ diagrams, which are particularly useful when one is uncertain about
the breakpoint. These are presented as graphs of the statistics within two lines.
If the graphs cross the lines it indicates structural instability. They also present
recursive estimates, where the parameters are estimated on the first £ + 1 obser-
vations, the first £ + 2 and so on up to 7. Breaks may show up in the estimates.
They also give Andrews-Quandt tests which identify the most likely place for a
break. Tests with an unknown break-point will have much less power than tests
with a known break-point.
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4.2. Serial Correlation
Suppose the data were generated by:

Yo = B+ vs v = pui +

y = Bre+pug +
where u; is a ‘well-behaved’ disturbance distributed I N (0, 0?); but we estimate

Y = bz +
the estimated residuals
Uy =Y —E/It =[x+ poiq + _/b\/xt
= (B —Z)':z:t + pvi_q + uy

we could test the hypothesis that p = 0, there is no serial correlation by running
a regression of the estimated residuals on the regressors and the lagged residuals:

~ / ~
Uy = CTp + pUp—1 + Ut

and testing p = 0 with a t test. We replace the missing residuals (for period
zero here) by their expected value zero. If we think there may be higher order
correlations, we can add more lagged residuals and test the joint hypothesis that
all the coefficients of the lagged residuals are zero, with an F test. For instance,
if we have quarterly data, we would be interested in testing for up to fourth order
serial correlation, i.e. all p;, =0, =1,2,...,4 in:

~ / ~ ~ ~ ~
Uy = CTy + P1Ut—1 + PoUt—2 + P3Vt—3 + PgU—a + Uy

This is a different alternative hypothesis to that of no first order serial correlation,
but the null hypothesis is the same.

4.3. Heteroskedasticity.

Suppose we estimate the first stage linear regression (4.3), then in heteroskedas-
ticity tests we run second stage regressions using the squared residuals:

U = o+ bz +
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the null hypothesis is that the expected value of the squared residuals is a constant
a, so b = 0, and this can be tested with an F test. On the alternative hypothesis,
the variance, squared residuals, change with z;. There are lots of ways that the
variance could change, thus lots of possible candidates for z;. It could be x;, the
regressors; it could be the squares and cross-products of the regressors, often
called the White test; it could be the squared fitted values, the RESET version;
it could be lagged squared residuals, testing for ARCH (autoregessive conditional
heteroskedasticity); etc.

4.4. Normality

If the residuals are normal then their coefficient of skewness (third moment) should
be zero and ceoffiecient of kurtosis (fourth moment) three. This is tested by the

Jarque-Bera test
/13 L[y ’ 2
T3 4 — (22— ~ x“(2
6u] " 24 (M% > %
where j1; = S AT

4.5. Non-linearity

We distinguish (1) equations which are non-linear in variables because of trans-
formations, like logarithms or powers, but which can be estimated by a linear
regression on the transformed data and (2) equations which are non-linear in pa-
rameters, where we need a non-linear estimation routine of the type discussed in
2.2. We first consider models that are linear in parameters then ones that are
non-linear in parameters.

4.5.1. Linear in parameters and not in variables

Suppose we are explaining the logarithm of wages, w;, of a sample of men i =
1,2,...,N by age, A, and years of education, E. This is certainly not linear, at
some age wages peak and then fall with age thereafter, similarly with education:
getting a PhD in the UK reduces expected lifetime earnings by about 20%. In
addition, the variables interact, wages peak later in life for more educated people.
This suggests a model of the form:

W; :a+bAi+cA?—l—dEZ-+eEi2—|—fEiA,~+ui
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This model is linear in parameters though it is non-linear in the variables and
can be estimated by OLS on the transformed data. We expect, b,d, f > 0 and
c,e < 0. The age at which earnings is maximised is given by the solution to:

ow
A= OHIE
2c

which if the estimated coefficients have the expected signs is positive (since ¢ < 0)
and peak earning age increases with education.

4.5.2. Logarithms

The most common transformation is logarithms. We often use logarithms of
economic variables since

1. prices and quantities are non-negative so the logs are defined

2. the coefficients can be interpreted as elasticities, % change in the dependent
variable in response to a 1% change in the independent variable, so the units
of measurement of the variables do not matter

3. in many cases errors are proportional to the variable, so the variance is more
likely to be constant in logs,

4. the logarithms of economic variables are often closer to being normally dis-
tributed

5. the change in the logarithm is approximately equal to the growth rate and
6. lots of interesting hypotheses can be tested in logarithmic models.
7. often effects are proportional, which is captured by logarithmic models.

Normally we use natural logarithms to the base e.

4.5.3. Interpreting regression coefficients with transformed data

Typically we interpet regression coefficients as derivatives or elasticities. Often
the derivative or elasticity is not constant, but a function of the variables, as in
(4.2) above. We consider some other cases below.
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Linear in variables In the standard linear regression bteween continuous un-
transformed variables
}/;5 =a+ BXt + Ut,

£ measures the change in Y; that result from a one unit change in X; : AX; = 1.
It corresponds to the derivative

Y,

ax, 7

[ depends on the units that the variables are measured in. Suppose, X; is per-
capita GDP measured in dollars and Y; is life expectancy in years, then [ is the
number of extra years of life bought by an extra dollar. The standard error of
regression measures the size of a typical error and is in the same units as the
dependent variable, here years.

The elasticity is the percentage (proportionate) change in Y; that results from
a one percent change in X;.

Cov/Y, | ologY,
= 8Xt/Xt N 810gXt

The elasticity is invariant to units, but in the linear case does depend on where
we measure it.
_ BXy

Y,
For a linear relationship, the elasticity is different at every point on the line.
A convenient place to measure it is at the typical values, the means of X; and Y.

Log-log regression In a logarithmic regression
logY; = a+ flog X; + u,

then [ is the elasticity. The standard error of regression measures a typical
proportional error (multiply by 100 to get percentage error). To provide a rough
comparison with the fit of a linear model, divide the standard error of the linear
model by the mean of the dependent variable (assuming the mean is positive and
non-zero) which will also give a proportionate error.

Suppose we have a dummy variable in the equation

log, = a+ Blog X; +vDy + uy
where D; = 0 or D; = 1. The effect on Y; of the dummy variable going from zero

to one is exp(f) — 1.
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Percentages Suppose Y; and X; are both percentages. For instance, Y; is the
inflation rate, measured in percent, and X is the unemployment rate, also mea-
sured in percent. Then [ measures the percentage point change in Y; in response
to a one percentage point change in X;. If unemployment rises from 1% to 2%,
it increases by one percentage point and 100%. The Phillips Curve relationship
between inflation and unemployment may be non-linear: the effect on inflation of
a one percentage point change in unemployment is much greater when unemploy-
ment is 1% than when it is 9%. We can represent this by using the reciprocal of
unemployment

Y, = oz—i—ﬁXt_l—i-ut,
oY,

o py2
e BX,~.

So at 1% unemployment the effect is just —3, but at 9% unemployment it is
—[3/92, very small.

Semi log One may not log both dependent and independent variables one might
regress life expectancy in years on log per-capita income (which is what Gapminder
does), i.e. an equation, sometimes called linear-log, of the form

Y, = a+ Blog X; + uy

If X; changes by 1%, then AX,/X; = 0.01, so Y; changes by 0.015.
One can have it the other way round a log-linear model

logY;, = a+ BX; + .

Here a unit change in X;, AX; = 1, causes a 1005% change in Y;.

4.5.4. Testing for non-linearity

In the wage example above we had strong prior reasons to include squares and
cross products. In other cases we do not, but just want to check whether there is
a problem. Adding squares and cross-products can also use up degrees of freedom
very fast. If there are k regressors, there are k(k+1)/2 squares and cross products,
for k=5, 15 additional regressors. This is fine in large cross sections with thousands
of observations, but in small samples it is a problem. Instead, we estimate a first
stage linear regression:

—~ .
Yo = B+ Uy (4.3)
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with fitted values 7; = glxt; and run a second stage regression:
Uy = by, + )+
and test whether c is signficantly different from zero.
Eviews does this Ramsey RESET test slightly differently. It runs
ye = d'v + ey; + v

and tests whether e is significantly different from zero. Noting that
~ ~ /\, —~
Yo = Yp + Uy = B xy + Uy,

d=(b+ B)’ so they give identifical test statistics.
Higher powers of 7; can also be added. Notice that 72 is being used as a
measure of squares and cross-products of the z;. For the simple model:

Y = By + Bowar + Bz + uy

@\f = (B + Byra + 53$3t)2
~2 ~2 ~2 ~

Tests which use powers of the fitted values in this way are often known as RESET
tests.

4.5.5. Non-linear in parameters

If our dependent variable is a proportion, p; taking values between zero and one,
the logistic transformation is often used In(p;/(1 — p;). If this is made a function

of time,
Pt
ln< ) =a + bt 4+ u,
1—p

this gives an S shaped curve for p; over time, which often gives a good description
of the spread of a new good (e.g. the proportion of the population that have
a mobile phone) and can be estimated by least squares, since it is linear in the
parameters. The form of the relationship is

1
 1+exp—(a+bt+u)

P
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Programs like EViews can handle inherently non-linear problems, so if we
wanted to estimate a logistic with a saturation level so that p, = N;/K, where
N, is the number of mobile phone owners and K is the saturation level we could
estimate

K
N, =
" 14 exp—(a+bt) e

directly by non-linear least squares. Notice the assumption about the errors is
different. In the previous case the error was additive in the logit, here it is additive
in the number. We would enter this in Eviews as

N =C(1)/(1+exp(C(2) + C(3) * Qtrend)).

@trend in EViews provides a trend. C(1) would be an estimate of K, C(2) of
a and C(3) of b. In practice, unless the market is very close to saturation it is
difficult to estimate K precisely.

For non-linear models, the program uses an interative method to find the min-
imum of the sum of squared residuals or the maximum of the likelihood function.
The function may not be well behaved and there may be multiple maxima or
minima. See the discussion in 2.2 and the applied exercise for an example.

5. Univariate Stochastic Processes

Suppose we have a series of observations on some economic variable, y;,t =
1,2, ..., T, which may already have been transformed, e.g. the logarithm of GDP.
It is useful to regard each y; as a random variable with a density function, f;(y;)
and we observe one realisation from the distribution for that period. A family
of random variables indexed by time is called a stochastic process, an observed
sample is called a realisation of the stochastic process. A stochastic process is
said to be ‘strongly stationary’ if its distribution is constant through time, i.e.
fi(y) = f(ye). Tt is first order stationary if it has a constant mean. It is second
order, or weakly or covariance stationary if also has constant variances and con-
stant covariances between y, and y;_;, i.e. the autocovariances (covariances with
itself in previous periods) are only a function of ¢ (the distance apart of the ob-
servations) not t, the time they are observed. These autocovariances summarise
the dependence between the observations and they are often represented by the
autocorrelation function or correlogram, the vector (graph against i) of the auto-
correlations r; = Cov(ys, yi—i)/Var(y,). If the series is stationary, the correlogram
converges to zero quickly.
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The order of integration is the number of times a series must be differenced
to make it stationary (after perhaps removing deterministic elements like a linear
trend). So a series, y;, is said to be Integrated of order zero, 1(0), if y, is stationary;
integrated of order one, I(1), if Ay, = y; — y;—1 is stationary; integrated of order
two, 1(2), if

AQ?Jt = Ay — Ay = (yt - yt—l) - (%—1 - yt—2) =Y — 2Yr—1 + Y2

is stationary. Notice that A%y, # Aoy, = 1y, — yi—a-
In examining dynamics it will be useful to use the Lag Operator, L, sometimes
known as the backward shift operator B.

Ly, = yi1; Ly =y o; etc
Ay, = (1= L)y, AQ?Jt =(1- L)Q?Jt-
5.1. White noise processes
A stochastic process is said to be White Noise if
E(c‘:t) = 0,
E(ef) = o
E(é‘té‘t,i) = 0, Z#O

We will use ¢; below to denote white noise processes.

5.2. Autoregressive processes
A first order (one lag) autoregressive process (AR1) takes the form:
Yo = PYi-1t &
yt(]- - pL) = &

with E(y,) = 0, and is stationary if | p |< 1. If it is stationary, then by repeated
substitution, we get the sum of a geometric progression:

Yy = &1+ per_1+ pPero + pleis.... (5.1)
w = (1—pL) e,

the variance of y; is F(y?) = 02?/(1 — p?) and the correlations between y; and y;_;,
r; = p', so decline exponentially. A constant can be included v, = o + py,—1 + &,
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then FE(y;) = a/(1 — p). If the process is stationary, the parameters of the AR
model can be estimated consistently by Least Squares, though the estimates will
not be unbiased (y;—1 is uncorrelated with €; but not independent since it is
correlated with ;_1); the estimate of p will be biased downwards.

A p th order autoregression (ARp) takes the form:

Yt = P1Ye—1 + PoY—2 + oo + ppY—p €t

Yt — PrlYi—1 — PlYt—2 — - — PplYt—p = &t
(1= p L —poL? — .. = P L) yr = €.
The last expression is a p th order polynomial in the lag operator, which we can
write AP(L). y; is stationary if all the roots (solutions), z;, of 1 — p;z — pyz? — ... —
pp2" = 0 lie outside the unit circle (are greater than one in absolute value). If a
root lies on the unit circle, some z; = 1, the process is said to exhibit a unit root.
The condition is sometimes expressed in terms of the inverse roots, which must
lie inside the unit circle. Usually we just check that ) p, < 1 for stationarity.
Consider the case of an AR1 process

Yt = PYi—1 t+ .

For stability, the solution to (1 — pz) = 0, must be greater than unity in absolute
value, since this implies z = 1/p this requires —1 < p < 1. For an AR2 the real
parts of solution to the two solutions to the quadratic (1 — p;z — py2%) must be
greater than unity.

5.3. Random Walks
If p = 1, there is said to be a unit root and the AR1 becomes a random walk:
Yt = Ye—1 T Et;
or Ay, = g;. Substituting back
Y =€t + -1+ ...€1 + Yo;

so shocks have permanent effects. A random walk with drift is of the form:
Ay = a+ &4

In both these cases, Ay; is stationary, 1(0), but y,; is non-stationary, I(1). If
there is no drift the expected value of y; will be constant at zero, if y, = 0,
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but the variance will increase with t. If there is a drift term the expected value
of 1;, as well as the variance, will increase with t. Random walks appear very
often in economics, e.g. the efficient market hypothesis implies that, to a first
approximation, asset prices should be random walks.

5.4. Moving Average processes

A first order moving average process (MA1) takes the form
Yp = E¢ + HEL—1;
a q th order moving average:
Yt = €t + M1E¢—1 T+ MoEt—2 T ...+ [UEt—g;
ye = (L i L+ ppp L2 + o+ 1, L%)e; = BY(L)ey.

Cov(ys,yi—i) = 0, for i > ¢. A finite order moving average process is always
stationary. Any stationary process can be represented by a (possibly infinite)
moving average process. Notice that the AR1 is written as an infinite MA process
in (5.1). The parameters of the MA model cannot be estimated by OLS, but
maximum likelihood estimators are available. If a MA process is invertible we can
write it as an AR, i.e. BY(L)"'y, = ;. Notice that if we take a white noise process
y, = &; and difference it we get

Ay =€ — e

a moving average process with a unit coefficient.

5.5. Autoregressive Integrated Moving Average (ARIMA) processes

Combining the AR and MA processes, gives the ARMA process. The first order
ARMA(1,1) with intercept is

Y =+ pYp1 +E + UEL1

In practice, the data are differenced enough times, say d, to make them station-
ary and then modelled as an ARMA process of order p and q. This gives the
Autoregressive Integrated Moving Average, ARIMA (p,d,q) process, which can be
written using the lag polynomials above as:

AP(L)Adyt =+ Bq(L)gt.
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For instance, the ARIMA(1,1,1) process is
Ay = o+ pAy_1 + 4 + pgy

ARIMA models often describe the univariate dynamics of a single economic time-
series quite well and are widely used for forecasting.

5.6. Trend and difference stationary processes

Most economic time-series, e.g. log GDP, are non-stationary, trended. The trend
can be generated in two ways. First, the traditional assumption was that the
series could be regarded as stationary once a deterministic trend was removed.
For instance:

Yr = @+ pyr1 Tyt + & (5.2)

with | p |< 1 is a trend stationary process. The effects of the shocks ¢; are
transitory and die away through time, since &,_; is multiplied by p° when you
substitute back, see (5.1) above. If the variables are in logs, the long run growth
rate is g = /(1 — p). Second the series could be regarded as a random walk with
drift, difference stationary:

Ayt = a+é&
Yy = a+Yy1+&

The long run growth rate is a.

We want to test the null of a difference stationary process (one with a unit
root) against the alternative of a trend stationary process. Substiture v = g(1—p)
then substract g,_; from both sides, so we can write the trend stationary process
as:

Ay = a+(p—1) (Y1 —gt) +&
Ay, = a+ By —gt) + e

where 5 = p— 1. If p = 1 or equivalently g = 0, we get the random walk with
drift:with growth rate a. Substituting back we get

v = a+ (a+yo+e1)+ey
Yo = Yo+ 20+ +e
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continuing the process to period zero, we get:

t—1

Yt = Yo + ot + th_i'
1=0

In this case, the difference stationary process, the efects of the shocks are perma-
nent or persistent, they last for ever, and the series is determined by an initial
value, 19, a deterministic trend at, and a ‘stochastic trend’, E;é €_;, the sum of
past errors.

If we had not restricted (5.3) so that the trend term dropped out when § = 0,

there would be a quadratic trend in y;. Show this by substituting back in

Y = at+y1t+yt+e
Yo = at+(at+yo+y(t—1)+e 1)+t +e (5.5)

etc.

5.7. Testing for unit roots

Choosing between the trend stationary and difference stationary model is a matter
of determining whether 8 = 0 or equivalently p = 1; whether there is a ‘unit root’
in y;. To do this we can estimate (5.3) by running a regression of Ay, on a
constant, y;—1 and a linear trend; estimate B the coefficient on the lagged level
of y;—1; construct the ‘t statistic’ 75 = [S/SE(B) to test Hy : = 0; against
H, : g < 0. If we do not reject the null we conclude that there is a unit root in
i, it is integrated of order one, I(1), stationary after being differenced once. If
we reject the null we conclude that y; is trend stationary I(0). This is a one-sided
test and if ﬁ > 0, we do not reject the null of a unit root. The test statistic 73
does not have a standard t distribution, but a Dickey Fuller distribution and the
critical value is -3.5 at the 5% significance level, when a trend is included. This
is because under H, the regressor, y;_; is non-stationary. If there is no trend
included in the regression the 5% critical value is -2.9. Most programs will give
you these critical values or the relevant p values.

To get good estimates of (5.3) we require that &, is white noise. Often this
will not be the case and the error will be serially correlated. To remove this serial
correlation, lags of the dependent variable are added to give the ‘Augmented
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Dickey Fuller’ (ADF') regression:

p
Aye=a+ By +yt+ Y 6y, + &
=1

where p is chosen to try to make the residual white noise. Show that this is a
reparameterisation of a AR(p+1) with trend. Again the procedure is to use the t
ratio on J with the non standard critical values to test the null hypothesis 5 =0
against the alternative g < 0.

To test for I(2) versus I(1) you just take a further difference:

p
A’y = o+ Ay + Z (51'A2yt,i + &

i=1

if it was thought that there might be a trend in the change (not common for
economic series) it could be included also. Again Hy : f = 0; against H; : 8 < 0.

There are a range of other procedures for determining whether there is a unit
root. They differ, for instance, in how they correct for serial correlation (in a
parametric way like the ADF where you allow for lags or in a non-parametric way
like Phillips Peron where you allow for window size); whether they include other
variables; whether they use the null of a unit root like the ADF or the null of
stationarity, like KPSS; whether they use GLS detrending; and whether they use
both forward and backward regressions. EViews gives you a lot of choices.

Most of these tests have low power, it is very difficult to distinguish p = 1
from a stationary alternative in which p is close to unity. The power of the tests
depends on the span of the data not the number of observations. For instance UK
unemployment rates 1945-1985 appear I(1), UK unemployment rates 1855-1985
appear [(0). The tests are also sensitive to step changes, an I(0) process with a
single change in level will appear I(1), as it should since the shock (change in level)
is permanent. The order of integration is a univariate statistical summary of how
the time series moves over the sample, it is not an inherent structural property of
the series. Whether you treat a variable as I(0) or /(1) depends on the purpose
of the exercise, for estimation it is often safer to treat it as I(1).

6. Dynamic Linear Regression, ARDL models

When we look at the relationship between variables, there are usually lags between
the change in one variable and the effect on another. The distributed lag of order
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q, DL(q) regression model takes the form:
Y = o+ Boxy + B + ..+ 5qxtfq + uy

notice that it is similar to a moving average, except that here the shocks are
observed, x;, rather than being unobserved. We can combine the distributed lag
with an autoregressive component to give the ARDL(p,q) process:

Y=o+ oY1+t Y p + Bote + B1Te1 + o+ BT g+ (6.1)

where u; is usually a white noise error, though it could be moving average. If the
error is white noise, the parameters can be estimated consistently by OLS, though
the estimates are not unbiased. ;.

A simple version is ARDL(1,0)

Y = o + i1 + Bay + (6.2)

which can be derived from a partial adjustment model (PAM) where there is a
long run relationship determining an equilibrium or target value:

y; = 6o+ 0,24
and slow adjustment to equilibrium
Aye = My — ye—1) + w,

where A measures the speed of adjustment, the proportion of the deviation from
equilibrium made up in any period. Then

Yy = Mo + M2y + (1 — Nye_1 + uy. (6.3)

The parameters of (6.3), which can be given a theoretical interpretation, can
be recovered from the estimates of (6.2) : A =1—ay; 0, = /(1 —aq); 0y =

Oéo/ (1 — Oél) .
The process (6.1) is stationary, (conditional on x; the process is stable), if all
the roots (solutions), z;, of the characteristic equation

1—az— a2’ — ... — ! =0 (6.4)
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lie outside the unit circle (are greater than one in absolute value). We usually
check that > «; < 1. In this case, if x; is constant, say at z, then y; will converge
to a constant, say y, and the long run relation between them will be:

y = Qo 4 ;']:o B
1= 1=

This can be obtained by setting 3;,_; = v and x;_; = x for all i. This long-run
solution is usually interpreted as the long-run equilibrium or target value for y; and
can be calculated from the estimated regression coefficients. Standard errors for
the long-run coefficients can be calculated by the delta method, which is available
in most programmes.

This procedure is appropriate in quite a wide variety of circumstances including
if all the variables are I(0) and z; is exogenous; or if all the variables are I(1), there
is a single cointegrating relationship and z; is exogenous; or if there are mixtures
of I(0) and cointegrating I(1) variables such that u; is white noise. See below for
more details.

r=0¢+0,z.

6.1. ARDL(1,1) and Error Correction Models

ARDL models or dynamic linear regressions are widely used to examine the rela-
tionship between economic variables. We will use the ARDL(1,1) for illustration,
this is:

Yr = ao + oaay—1 + Boe + f1oe1 + (6.5)

It is stable if —1 < a; < 1, and then has a long run solution:

.« -
o+ﬁo By

= =0+ 0,2,
Ye 1—0{1 1—041% 0+ a

Where y; is the target or long run equilibrium value for 3, to which it would tend
in the absence of further shocks to z; and u;. There are a number of other useful
ways of rewriting (reparameterizing) (6.5).

Write (6.5) as

Yr — Y1 = o + (a1 — D)y + Bo(xr — 24-1) + (B + B1) @1 +
Ay = ag + boAzy + ar1y—1 + b1z + uy (6.6)

where ag = ag; by = Bg;a1 = (1 — 1);01 = 5y + 54; or in terms of adjustment to
a long-run target:
Aye = MAY; + Xa(yi 1 — ye1) +ue
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where the long-run target or equilibrium (as calculated above) is
y: - ‘90 + exxta

and the )\; are adjustment coeficients which measure how y adjusts to changes
in the target and deviations from the target. Notice ag = Aoblp; a1 = —A9;bg =
A10.; 01 = Aof,.. This form is usually known as an ‘Error (or equilibrium) Correc-
tion Model’ ECM. The dependent variable changes in response to changes in the
target and to the error, the deviation of the actual from the equilibrium in the
previous period: (y; ; — yi_1)-

An alternative parameterization, which unlike the ECM nests the partial ad-
justment model (6.2) is:

Ay, = ag + (a1 — Dye—1 + (Bg + B1) v — B1AT + s

6.2. Reparameterizations & Restrictions

When you reparameterize a model, as we did above going from (6.5) to (6.6),
you estimate exactly the same number of parameters (4 in this case), just written
in different ways.You will get identical estimates of say, the long-run coefficient,
whether you estimate it as an ARDL, ECM or by a non-linear procedure. The
statistical properties of the model do not change, the estimated residuals, standard
error of the regression and the maximised log-likelihood are identical between the
different versions. R? will change, because the proportion of variation explained
is measured in terms of a different dependent variable, Ay; in the ECM rather
than g, in the ARDL. Any RESET tests that use fitted values of the dependent
variable will also change. Use the misspecification tests which use the fitted values
of Ay,.

When you restrict a model, you reduce the number of parameters estimated
and such restrictions are testable. The ARDL(1,1) nests a number of interesting
restricted special cases, including:

(a) Static: a; = 0; 3, = 0.

(b) First difference: oy = 1; 8, = —f3,

(c) Partial Adjustment Model:5, = 0

(d) First order disturbance serial correlation: 8, = — 1
(e) Unit long-run coefficient: 5, + B, + a3 =1
(f) Random Walk with drift: oy = 1; 8, = 5, = 0.

A useful procedure in many circumstances is to start with a general model,
e.g. the ARDL(1,1) and test down to specific restricted cases. This general to
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specific procedure has the advantage that any tests on the general model are valid.
Whereas if you start from the restricted model, the tests will not be valid if the
model is misspecified.

Case (d) is got by assuming that the model is:

Y =+ B+ v v = pug &
where ¢, is white noise, this can be written:
Y =+ B+ pu1 + &
noting that
vy =y —a—Pr; and v =y —a— B
Y=+ Bry+ p(yi—1 — . — fryy) + &

Y = o1 — p) + Bay + pyr—1 — Bpri1 + &

which is of the same form as (6.5) with the restriction that the coefficient of z;_;
equals the negative of the product of the coefficients of z; and y;_;,i.e. 5, = —f,
in terms of the parameters of the unrestricted model. This is sometimes called the
common factor model, since it can be written (1 — pL)y; = (1 — pL)(a+ Bxy) + &y,
both sides of the static model are multiplied by the common factor (1 — pL). The
restricted model (with AR1 errors) is not linear in the parameters and is estimated
by Generalised Least Squares or Maximum Likelihood.
In case (e) the restricted model can be written:

Ayt = qag + boA$t + ag (yt—l - xt—l) + e

and the restriction is equivalent to assuming b; = —a; in (6.6).

6.3. ARDL(1,1,1)

The structure generalises to more explanatory variables, e.g. the ARDL(1,1,1)
model

Yy = o + ar1l—1 + Boxy + Biri—1 + Yoz + V121 + Uy (6.7)

has a long run solution:

! + +
y = 0 +50 ﬁlx+% 71

= =0+ 0, 0.z
]_—O_/l ].—O[l 1—0(12 0+ T ‘
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Notice that our error correction adjustment process
Ay = MAY; + Xy 1 — Y1) + e

yr = 0o + 02, + 0.2,

now imposes restrictions. In the case of one exogenous variable, there were four
ARDL parameters (o, a1, 3y, 5,) and four theoretical parameters (A1, A2, 6o, 0,)
so no restrictions. In the case of two exogenous variables there are six ARDL para-
meters, (o, a1, By, 81,70, 71) but only five theoretical parameters (A1, Ay, 0o, 6., 6.,).
What is the restriction?

6.4. Adaptive Expectations

Define the expected value of x;,; conditional on information available at time t,

as:
E(wyq | ;) = Ty

agents determine their actions according to:
yr = By + (6.8)
and determine their expectations according to:
rp — = ¢(z — xy_4)

they adjust their forecast proportional to the forecast error they made in the
previous period (note z§_; is the forecast of x; made in the previous period). This
can be written:

vy = ¢r+ (1 - @)y,
(1= =-9¢)L)z; = oz
oy

%S AU D =¢;<1—¢>>"xt_i

substituting this exponentially weighted moving average of past xz; in (6.8) gives:

=i (i) (09
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premultiply by (1 — (1 — ¢)L) to give
(1= =9¢) L)y = oz + (1 — (1 = ¢)L)uy

Y = Boxy + (1 — d)yp1 +up — (1 — @)up—y

an ARDL(1,0) with a MA1 error, with a restriction that the AR and MA coeffi-
cients should be equal and of opposite sign.

This type of transformation (known as the Koyck transform) can be used to
get rid of a variety of exponentially weighted infinite distributed lags.

7. Cointegration

7.1. Introduction

Suppose y; and z; are I(1) then in general any linear combination of them will also
be I(1). If there is a linear combination that is I(0), they are said to cointegrate.
If they cointegrate, they have a common stochastic trend which is cancelled out
by the linear combination; and this linear combination is called the cointegrating
vector, which is often interpreted as an equilibrium relationship.

Suppose we have data on s, p:, p;, the logarithms of the spot exchange rate
(domestic currency per unit foreign), domestic and foreign price indexes and that
each of these are I(1). Purchasing Power Parity says that the real exchange rate
er = sy — pr + p; should be stationary, i.e. e; = e + u; where e is the equilibrium
real exchange rate and w; is a stationary (not necessarily white noise) error. The
cointegrating vector is then (1,—1,1). It is quite common in economics to get
ratios of non-stationary variables being approximately stationary. These ‘great
ratios’ include the real exchange rate, the savings ratio, the velocity of circulation
of money, the capital-output ratio, the share of wages in output, the profit rate,
etc. In each case a linear combination of the logarithm of the variables with
cointegrating vectors of plus and minus ones should be stationary and this can be
tested using the unit root tests described above.

The coefficient does not need to be unity. If

Yo =a+ i+ (7.1)
and v, is stationary, the cointegrating vector is (1, —f) since (y; — fr; = a + wy)

is 1(0).
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If y; and x; are I(1) and do not cointegrate, say they are independent unrelated
random walks, the error in (7.1) will be I(1) and this will be a ‘spurious’ regression.
As T — oo, the R? of this regression will go to unity and the t ratio for B will
go to a non-zero random variable. Thus even if there is no relationship, the
regression would indicate a close relationship. Therefore it is important to test
for cointegration. A similar issue arises in the ARDL(1,1). Write it in the ECM
form:

Ay, = ag + bpAzy + a1y, 1 + biry 1 + uy.

This equation does not seem to balance, the left hand side Ay, is 1(0) and there
are two I(1) terms y; 1 and x; ; on the right hand side. It only balances if a
linear combination of the I(1) terms is I(0), that is if y; and x; cointegrate so that
Yy — O,z is 1(0) with cointegrating vector (1, —#6,), in:

Ay, = ag + boAzy + Myp—1 — 0z0-1) + (7.2)

Notice that if they cointegrate A must be non-zero and negative (this is the feed-
back that keeps y; and x; from diverging. We can test for this, though the critical
values are non standard, see below. Notice we are free to normalise the cointegrat-
ing vector, since a;y;_1+b1z4_1 is I(0), we could also have called the cointegrating
vector (a1, by) = (A, —A\0,).

With only two I(1) variables there can only be a single cointegrating vector, but
with more than two variables there can be more than one cointegrating vector and
any linear combination of these cointegrating vectors will also be a cointegrating
vector. Suppose that we have data on domestic and foreign interest rates and
inflation (ry, 77, Ap;, Apf) and all are I(1) (this implies that p, is 1(2)). If real
interest rates (r;—Ap; and r; —Ap}) are I(0) with cointegrating vectors (1,0, —1,0)
and (0,1,0,—1); then the real interest rate differential (r, — Ap;) — (rj — Ap})
would also be I(0), with cointegrating vector (1, —1,—1,1).

7.2. Ways to test for cointegration.

7.2.1. Known cointegrating vector

If the cointegrating vector is known a priori (as with the real exchange rate or
real interest rate examples above) we can form the hypothesised 1(0) linear com-
bination (the log of the real exchange rate or the real interest rates) and use an
ADF test to determine whether it is in fact 1(0).
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7.2.2. Single unknown cointegrating vector

There are three procedures here.

(a) Those that can be used for multiple unknown cointegrating vectors dis-
cussed below.

(b) Estimating an ARDL model and testing for the existence of a long-run
relationship, i.e. test the null hypothesis that the levels z; ; and %, ; should
not appear in the equation or equivalently that A\ = 0 in (7.2) above, using the
appropriate (non-standard) critical values, which are given in Pesaran, Shin and
R.J. Smith, Journal of Applied Econometrics, 2001, p289-326, Bounds Testing
Approaches to the Analysis of Level Relationships..

(c) Running the levels equation (7.1) above and testing whether the residuals
are I(1), using an ADF test and the appropriate critical values, which are different
from those for an ADF on an ordinary variable. This is the original Engle-Granger
procedure. Although the estimates of (7.1) are ‘superconsistent’ (converge to their
true values at rate T rather than +/T), (7.1) is clearly misspecified because it
omits the dynamics, thus the estimates can be badly biased in small samples. In
addition doing a unit root test on the residuals, imposes very strong restrictions
on the short-run dynamics, which may not be appropriate. Thus the original
Engle-Granger procedure is not recommended in most cases. If you know that
one variable is exogenous use (b), if you do not know which is the exogenous
variable start with (a) and test for exogeneity.

7.2.3. Multiple unknown cointegrating vectors

Again there are a variety of procedures, but the most commonly used is the
Johansen procedure discussed below. This procedure operates in the context of a

VAR, which we consider first.

7.3. Vector Autoregressions and cointegration
7.3.1. VARs
The generalisation of an AR2 to a vector is the VAR2:

Y = a4+ A1y + Asyro + &4

where 1, is now a m x 1 vector, a a m x 1 vector, A; and A, are m X m matrices
and ¢; ~ N(0,X), where ¥ is a m X m matrix with elements o;;.
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For m = 2,...ys = (Y11, y2:)’ the VAR is:

_ 0 1 1 2 2
Yie = Q1+ a(Yu—1 + apY2i—1 + a1 Yie—2 + aaY2—2 + €14,

0, 1 1 2 2
Yar = Qg+ a5 Y1e—1 + AxoY2t—1 + A51Y11—2 + A3oYar2 + €2t

Each equation of the VAR can be estimated consistently by OLS and the covari-
ance matrix ¥ can be estimated from the OLS residuals,

T
~ Il s o
O0ij = 7 Eit€jt

T
t=1

where 71, is the estimated variance of 4, 715 the estimated covariance of ¢1; and
€9t

A variable o, is said to Granger cause yy; if knowing current values of y9; helps
you to predict future values of y;; equivalently, current yy; is explained by past
yor. In this case, yy; is Granger causal with respect to yy, if either ai, or a2, are
non zero. You can test that they are both zero with a standard F test of linear
restrictions. The restricted model just excludes y2;—1 and ys ;o from the equation
for yy;. Granger causality is rarely the same as economic causality, particularly
because expectations cause consequences to precede their cause: weather forecasts
Granger Cause the weather.

More lags can be included and you can decide the appropriate lag length by
Likelihood Ratio tests or model selection criteria like the AIC or SBC. Make sure
that you use the same sample for the restricted and unrestricted model; i.e. do
not use the extra observation that becomes available when you shorten the lag
length. If the lag length is p, each equation of the VAR with intercept has 1+ mp
parameters. This can get large, 4 lags in a 4 variable VAR gives 17 parameters
in each equation. Be careful about degrees of freedom. If the variables are I(1),
the usual tests are no longer valid, but Toda and Yamamoto (1995) suggest that
the problem can be dealt with by adding extra lags, beyond the optimal number,
which you do not use in the tests.?

A pth order VAR

p
Yy =a+ ZAiytfi + &

=1

’Dave Giles blog has a good discussion of this and many other topics:
http://davegiles.blogspot.ca/2011/04/testing-for-granger-causality.html
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is stationary if all the roots of the determinantal equation | I — Az — Apz? — ... —
A, 2P |= 0 lie outside the unit circle. When you estimate a VAR, EViews will give
you a graph of the inverse roots, which should lie inside the unit circle for the
variables to all be stationary.

We can reparameterise the VAR2:

Yy = Ao+ Ay + Ao + &4

as:

Y=y = Ao— (L — A1 — Ay — As(yp—1 — yi—2) + &4
Ayt = AO — Hyt—l + FAyt_l + Et

and the VARp as:

p—1
Ay = Ag — My, + Z LAy + .

i=1

Notice that this is the vector equivalent of the Augmented Dickey Fuller regression
that we used above for testing for unit roots. Express the I'; in terms of the A;.

7.3.2. Cointegration in VARs

If all the variables, the m elements of y;, are I(0), II is a full rank matrix. If all
the variables are I(1) and not cointegrated, II = 0, and a VAR in first differences
is appropriate. If the variables are I(1) and cointegrated, with r cointegrating
vectors, then there are r cointegrating relations, combinations of y; that are 1(0),

2y = 5,%

where 2, is a 7 x 1 vector and 3’ is a 7 X m matrix. Then we can write the model

as:
p—1

Ay = Ag —aziq + Z LAy + €4,

i=1
in which the I(0) dependent variable is only explained by I(0) variables and « is a
m X r matrix of ‘adjustment coefficients’ which measure how the deviations from
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equilibrium (the r I(0) variables z;_;) feed back on the changes. This can also be

written:
p—1

Ay, = Ao — af'y1 + Z LiAy i + &,
i=1

so II = o' has rank r < m if there are r cointegrating vectors. If there are r < m
cointegrating vectors, then y; will also be determined by m — r stochastic trends,
and will have m — r roots on the unit circle and m roots outside the unit circle.
If there is cointegration, some of the @ must be non-zero, there must be some
feedback on the y; to keep them from diverging, i.e. there must be some Granger
causality in the system.

If there are r cointegrating vectors and II has rank r, it will have r non-zero
eigenvalues and Johansen provided a way of estimating the eigenvalues and two
tests for determining how many of the eigenvalues are different from zero. These
allow us to determine r, though the two tests may give different answers. The
Johansen estimates of the cointegrating vectors [ are the associated eigenvectors.

There is an ‘identification’ problem, since the v and [ are not uniquely deter-
mined. We can always choose a non-singular 7 xr matrix P such that (aP)(P~!3) =
IT and the new estimates o* = (aP) and ° = (P~'$) would be equivalent,
though they might have very different economic interpretations. Put differently,
if 2,1 = B'y;1 are 1(0) so are 2} ; = P~f'y;_1, since any linear combination of
I(0) variables is 1(0). We need to choose the appropriate P matrix to allow us
to interpret the estimates. This requires r? restrictions, r on each cointegrating
vector. One of these is provided by normalisation, we set the coefficient of the
‘dependent variable’ to unity, so if » = 1 this is straightforward (though it requires
the coefficient set to unity to be non-zero). If there is more than one cointegrat-
ing vector it requires prior economic assumptions. The Johansen identification
assumption, that the g are eigenvectors with unit length and orthogonal, do not
allow an economic interpretation. Programs like EViews or Microfit allow you
to specify the r? just identifying restrictions and test any extra ‘over-identifying’
restrictions.

As we saw above with the Dickey Fuller regression, there is also a problem
with the treatment of the deterministic elements. If we have a linear trend in
the VAR, and do not restrict the trends, the variables will be determined by
m — r quadratic trends. To avoid this (economic variables tend to show linear not
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quadratic trends), we enter the trends in the cointegrating vectors,

p—1
Ay = Ag — a(B'ye—1 + ct) + Z LiAy;—i + &4,

i=1

so if an element of « is zero the trend drops out. Most programs give you a choice
of how you enter trends and intercepts; unrestricted intercepts and restricted
trends, option 4 in Eviews, is a good choice for trended economic data.

7.3.3. Example: money demand

Consider a VARI in the logarithms of real money, m;, and income, y;, which are
both I(1) with a linear trend:

my = ayp+ a11Mmy—1 + @Y1 + V1t + 1

Yo = Qg0+ Q1M1 + Q2li—1 + Yol + €24
The VECM is:

Amy = ayo+ (a1 — 1)my—1 + apye—1 + 71t +e1e
Ay = ag+ asme—1 + (22 — 1)ye—1 + Yot + a1,

or

Amy = apo+ Tumy—1 + Ti2Yi—1 + Vit +En

Ayy = ago+ Tormy—1 + Tol—1 + Yot + €2

Cointegration Suppose that they cointegrate so that z;, = m; — Sy, is 1(0). The
cointegrating vector is (1, —/3) and we have normalised the equation by setting the
coefficient of m; to unity, which is natural if we treat it as a demand for money
function. This single restriction just identifies the cointegrating vector for r=1.We
can write this

T
Amy = ayo+ mr(me—1 + W_myt—l) + 7t + e (7.3)
11
22
Ay = ago+ mor(my—y + ﬂ__yt—l) + Yol + €94
21

The cointegration restriction is that the long-run coefficient is the same in both

equations,
12 22

11 21

o7



This says (m117m22 — 12791 = 0) the determinant of 1T is zero, so II is singular, not
of full rank. With this restriction (7.3) becomes:
Amy = ayo— ar(my_1 — Pys_1) + vit + ug (7.4)
Ay, = a0 — ao(my—1 — Bye—1) + 7ol + ug

where —a; = 71 etc. Thus

. —Q +OZ16
= |: —Qly —|—Oé2ﬁ }

which is clearly of rank 1, since a multiple of the first column equals the second
column. A natural over-identifying restriction to test in this context would be
that g = 1.

Restricted trend The equation has unrestricted trend and intercept, to restrict
the trend we put it in the cointegrating vector, saving one further parameter:
Am; = aio— ar(me-1 — Byi—1 + ) + uy
Ay, = agy — aa(my_1 — Bye—1 + 1) + uy

Exogenous income If y; is weakly exogenous then oy = 0, which can be tested
and if accepted means income is a random walk with drift and (7.4) becomes

Am; = aig — ax(my—1 — By—1) + 7t + vy
Ay, = ag + uy
Define E(u;u;) = 05, i, j = 1,2, and noting that

o o
E(Ult ‘ U2t) = 0_12u2t = 0—12(
22 22

Ay, — azo)
and defining v; = uy; — E(uy | ua), we can get the ECM treating y; as exogenous:

o
Amy = (a10 — ago) + U—”Ayt — ag(my—1 — Byi1) + it + v
22
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An alternative just identifying restriction Rather than normalising (7.3)
on m; we could normalise it on y,

11
Amy = ayo+ T2 (W_mt—l + yt—l) + 7t +en
12

21
Ay, = ag + a2 (W_mt—l + yt—l) + Yot + o
22
which is observationally equivalent to (7.3), involves the same cross equation
restriction (7172 — m12me1 = 0), but gives us a new cointegrating relation z; =
f*my — y; and cointegrating vector (5%, —1).

7.4. Example, old exam question

A second-order cointegrating vector error-correction model (VECM), with unre-
stricted intercepts and restricted trends, was estimated on quarterly US data from
1947Q3 to 1988Q4. The variables included were the logarithm of real consump-
tion (c;), the logarithm of real investment (i;), and the logarithm of real income
(g;).- The Johansen maximal eigenvalue tests for, r, the number of cointegrating
vectors, were:

H, H, Statistic 10%CV

r=0 r=1 34.6 23.1
r<l r=2 15.8 17.2
r<2 r=3 3.3 10.5

The Johansen Trace Tests were:

H, H, Statistic 10%CV
r=0 r>1 53.7 39.3
r<l r>2 19.1 23.1
r<2 r=3 3.3 10.5

Assuming that » = 2, the following two just-identified cointegrating vectors Z1;
and Z2; (standard errors in parentheses) were estimated:

c 1 q t

1 0 —1.13 0.0003
(0.16) (0.0006)

0 1 —1.14 0.0007
(0.26) (0.001)
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The system maximised log-likelihood (MLL) was 1552.9. The system was then
estimated subject to the over-identifying restrictions that: (i) both coefficients of
income were unity, giving a MLL of 1552.3; and (ii) not only were the income
coefficients unity, but that the trend coefficients were also zero, giving a MLL of
1548.1.
The Vector Error Correction Estimates [t statistics| for the just identified sys-
tem (constants included but not reported) were
Acy Aiy Aq;
Z1;-1  0.075068  0.262958  0.192686
[2.74240] [ 3.20914] [ 4.63684]
Z2;, —0.011232 —0.171416 0.009323
[—0.67114] [—3.42157] [ 0.36694]
Aci_1 —0.209469 —0.171819 0.094535
[—2.31259] [—0.63368] [ 0.68749]
Aiy—q 0.022574  0.334330  0.156990
[0.72374] [ 3.58069] [ 3.31537]
Agi—1  0.212411  0.697502  0.126186
[3.17484] [ 3.48267] [ 1.24236]
R? 0.146291  0.405637  0.320507
SER 0.007527  0.022533  0.011427

(a) How many cointegrating vectors do the tests indicate?

(b) If there are r cointegrating vectors, how many restrictions on each vector
do you need to identify it.

(c) Interpret the just identifying restrictions used above.

(d) Test the two sets of overidentifying restrictions. 5% asymptotic (bootstrap)
critical values are x?(2) = 5.99 (8.46), x*(4) = 9.49 (14.23). Comment on the
difference between the results using the two sets of critical values.

(e) The VECM was estimated with unrestricted intercepts and restricted
trends. What does this mean?

(f) Do you think investment is Granger Causal for Consumption.

Answer

(a) one (b) r

(c) Investment does not appear in the consumption function and consumption
does not appear in the investment function.

(d) (i) 2(1552.9-1552.3)=1.2<x?(2), do not reject Hy (ii) 2(1552.9-1548.1)=9.6>x*(4)
reject Hy . With bootstrap critical values you would not reject Hy in case (ii).
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Small sample critical values given by the bootstrap are bigger than the asymptotic
values and so one is less likely to reject using the bootstrap critical values.
(e) The VECM for a m x 1 vector y, with unrestricted intercepts and restricted
trends is
Ay = pp+ By +t) +uy

where the intercepts p lie outside the error correction term and the trends vt are
restricted to lie within it. Whereas one estimates m intercepts, one only estimates
r trend coefficients, giving m — r restrictions.

(f) The fact that both Z2,_; (which is a function of lagged investment) and
Ai; 1 are individually insignificant in the consumption equation suggests that
investment may be Granger non-causal for consumption, though the two terms
could be jointly signficant.

8. Endogenous regressors and IV Estimation

8.1. Exogeneity

Originally a variable was said to be endogenous if it was simultaneously determined
within a system. But the terminology was widened to include any case where the
assumption of exogeneity failed including omitted variables, discussed above, and
measurement error.

Exogeneity is a difficult concept, Hendry’s text Dynamic Econometrics is a
good treatment. There are a number of different definitions, which fall into two
classes of approach in terms of (a) the relationship between the unobserved error
term and the regressors (b) the joint distribution of the observed random variables.
We have used the former above we now look at the latter.

The joint distribution of the random variables, y;, z;, can be written as the
product of the distribution of 3; conditional on z; and the marginal distribution
of x; :

Dij(ye, x4;05) = De(ye | w45 0c) D (45 01) (8.1)

6; is a vector of parameters of the joint distribution, ¢, of the conditional distri-
bution, 6,, of the marginal. The distribution that we will be interested in is the
distribution of y; conditional on x; and the parameters that we will be interested
in are the parameters of the conditional distribution 6. which we will usually de-
note by . Weak exogeneity requires that the parameters of interest should be
functions only of the parameters of the conditional distribution, 0. = 6 = (3, 0?),
and that the parameters of the conditional and marginal distributions should be
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‘variation free’: there are no restrictions linking them. Essentially this says that
we can ignore the information in the marginal distribution of = for the purpose of
estimating particular parameters. Notice that exogeneity is not an inherent prop-
erty of x, it is only defined relative to the parameters you want to estimate. x
may be exogenous for some parameters and not for others. This is the assumption
that we need for efficient inference about the parameters of interest.

Notice that in section (7.3.3) above income was weakly exogenous if ay = 0,
because the parameter of interest 3 did not appear in the the equation determining
income, which gave the marginal distribution for income.

The main reasons for the exogeneity assumption failing in economics are: (a)
ommitted variables discussed above, where the parameters of interest are not
of the distribution conditional on x;, but on the distribution conditional on x;
and the ommitted variable; (b) simultaneity, where the regressors are jointly de-
termined with the dependent variable (prices and quantities are simultaneously
determined by demand and supply), and (c¢) measurement errors in the regressors.
In each case we need information about the processes generating the regressors
to consistently estimate the parameters of interest. Strong exogeneity is weak
exogeneity plus Granger Non-causality of y; with respect to x;, we need this as-
sumption for forecasting. Super exogeneity requires that the parameters of the
conditional distribution, ., should be invariant to changes in the parameters of
the marginal distribution of x;. In this case even if the process generating x;
changes, the parameters of our regression do not change. We need this for pol-
icy analysis which usually involves changing right hand side policy variables and
essentially this assumption precludes the Lucas Critique. Notice that these three
definitions are presented in terms of the distributions of the observables, y; and
x¢, not the unobservable ;.

The second approach, used above and very common in the text books, presents
the assumptions in terms of the unobserved error or disturbance u;. Notice that
our assumption, in terms of the conditional distribution of y, D.(y | X;60) ~
N(XB,0%I), is equivalent to an assumption in terms of the unconditional distri-
bution of the disturbance u ~ N(0,%I). In this framework, there are three types
of exogeneity assumptions that are made about X. Firstly, it may be a set of
fixed numbers, non-stochastic or deterministic. These phrases are all equivalent
ways to describe the fact that X is not a random variable. Apart from trends
and seasonals non-stochastic variables are rare in economics. Secondly, it may
be strictly exogenous, a set of random variables which are distributed inde-
pendently of the disturbance term. Thirdly, it may be predetermined a set
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of random variables which are uncorrelated with the disturbance term. If X is
strictly exogenous, x; is uncorrelated with the whole sequence of u;, t = 1,2, ..., T.
If it is predetermined, it is only uncorrelated with the current value of u;. Typi-
cally predetermined variables are lagged (past) values of y; which are included in
the z;.

8.2. The Simultaneous Equations Model
8.2.1. The model

Consider a vector of m endogenous variables, vy,, jointly determined by k exoge-
nous variables x;
By, =Tzi+u; E(uu) = (8.2)

Where B is an m x m matrix, that describes how the endogenous variables influ-
ence each other and I' is a m x k& matrix. This is known as the structural form.
The reduced form is

y, = BTz, + B 'y (8.3)
Yy, = Hwt + Vi (84)
E(v,v))=3 = B QB

We can estimate the m x k matrix II, since the x; are exogenous, this is just
m equations estimated by OLS. However we want to estimate both B an m X
m matrix and I' a m X k matrix, so we are m? elements short. This is the
"identification problem", we need to specify m? prior restrictions to obtain all
the parameters of the structural form. Another way to see this is that since,
II1 = B™'I' = (BP) 'PT for any m X m non-singular matrix P, then B and
B* = (BP) and T" and I'* = PT" are observationally equivalent. Note that this
is the same problem we had with identifying cointegrating vectors above. In each
case we need to specify P a priori. Here this again involves specifying m? a priori
"just identifying" restrictions in order to obtain unique estimates.

The m? restrictions on the system mean that we need at least m restrictions on
each of the m equations. If there are d restrictions available for an equation, when
d < m, the equation is said to be underidentified or not identified and cannot be
estimated; when d = m it is said to be exactly identified or just identified; when
d > m it is said to be overidentified. You can have a system with some equations
identified and others not identified. Over identifying restrictions can be tested.
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One restriction on each equation will come from normalisation. Normalisation,
specifies that the coefficient of a dependent variable equals unity. The requirement
that d > m for each equation is called the order condition, a necessary but not
sufficient condition for identification. The sufficient condition is the rank condi-
tion. The order condition can be written in lots of different but equivalent ways.
One way of expressing it for a particular equation is that the number of excluded
exogenous variables (not appearing in that equation) must be greater or equal to
the number of included right hand side endogenous variables.

Equation (8.3) is called the restricted reduced form, since it reflects any re-
strictions on B and I', while (8.4) is called the unrestricted reduced form.

8.2.2. Demand and supply

Consider a simple demand and supply model for an agricultural product in struc-
tural form as

Qf = Yo+ Brapr + Y11Ye + Uy,
q; = Yoo+ Bogbt + YooWs + U

Demand is determined by price and income, supply is determined by price and
the weather and price adjusts so that demand equals supply ¢! = ¢¢ = ¢;. This
system simultaneously determines the two endogenous variables price and quantity
in terms of the exogenous variables income and the weather and the errors, so the
restricted reduced form is:

pr = [Bra— 622]71 {(v20 = 710) — V11Ye + Yoows + (uz — Ult)}l
QG = [512 - 522]_1 {(512%0 - 522%0} — BagY11¥e + BraVeaws + (612“% - ﬂgzult)}7

and the unrestricted reduced form is

Pt = Tio+ T1Ye + TraWs + Vg

qr = Too + MY + MWy + Vgt

The standard demand-supply system in economics is normalised in an unusual
form, making quantity the dependent variable in both equations. Usually systems
are normalised so that each endogenous variable is the dependent variable in each
equation.
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We can write the system in matrix notation as in (8.2), with m =2, k = 3 as

1
I —f g | | 70 Yu O + U1¢
1 -p - 0 Yt u
22 y2 Y20 Yo2 W 2t

In the demand-supply case

In general OLS estimates of the structural form will be inconsistent since in
the demand equation wuy; will be correlated with p, (which is a function of u,
as the reduced form equations show), so the exogeneity assumption fails. The
reduced form can be consistently estimated by OLS.

In the demand and supply example, both equations are exactly identified be-
cause we have two restrictions in each case, d = 2, m = 2. In the demand equation
we have 31; = 1;7v;5, = 0. In the supply equation 5, = 1;75; = 0. Here the rank
condition is that v;; # 0 and 74, # 0, so that income and the weather do influence
the system and are correlated with the endogenous variables.

Estimation can be done by Two stage Least Squares, which is the same as
Instrumental Variables, IV, discussed below. First estimate the reduced form and
obtain the predicted values for p; and ¢; :

Pt = Tio+ Ty + Trowy
Qi = To9o + To1Ys + Mooy

these are just functions of the exogenous variables and so are not correlated with
uy; and ug; and can be used in two second stage regressions estimating the struc-
tural equations

G = Yio T Brabe + 11y + e
G = Yoo T BaaDi + Vorws + e

where ey, = uy; + 5,501, neither of which are correlated with p.

8.2.3. A Keynesian system

Consider another example, the simple Keynesian model of an identity and a con-
sumption function:

}/;f = Ct+It7
Cy = a+ BY; + u.
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Notice that identification is not an issue for the identity, since there are no coef-
ficients to estimate. The restricted reduced form is

o 1 Uy
Y, = 1,
t 1_5+1—ﬁt+1—5
« 15} Uy
= I .
Cy 1—5+1—ﬁt+1—5

Notice the coefficient of investment in the income equation is the standard Key-
nesian multiplier. The unrestricted reduced form which we can estimate is

Yo = mo+muli+ v
Cy = moo + morly + vay,

where vy; = vg, etc. Clearly Y; is correlated with u; in the consumption function,
since as the reduced form shows u; determines Y; through consumption. What
is the covariance between Y; and u;? However we could estimate S by "indirect
least squares", ILS, as the ratio of the two reduced form coefficients of investment,
where the lower case letters indicate deviations from the mean:

BILS T Do/ D00 DGy
T > i/ Y Z% > Yily '
This can only be done in exactly identified cases, like this, where all the various
estimators (2SLS, IV, ILS and others) give the same estimates. Note that the
fourth term in the equation is exactly the same as the just identified IV estimator
that appears below.

Suppose that we had two exogenous variables, investment and government
expenditure

YZ - Ct+It+Gt,
Cy = a+ BY;+ u.

the restricted and unrestricted reduced form equations for Y; are

o 1 1 Uy
Y, = I G, + —
t 1—5+1—5t+1_5 t+1—5
Y, = mo+midy + 112Gy + v

The testable over-identifying restriction is that 7wy, = ma;.
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8.2.4. Recursive systems

Above we considered identification by restrictions on the coefficient matrices, B
and I'. But we can also get identification through restrictions on the covariance
matrix . If we assume that €2 is diagonal, this gives us m(m — 1)/2 restrictions,
that all the off diagonal elements are zero. If we also assume that B is triangular,
all the elements above the diagonal are zero, this gives us another m(m — 1)/2
restrictions. Together with the m normalisation restrictions, this totals m? and the
system is just identified. Such a system is called recursive and can be estimated
by OLS on each equation. An example is:

Y = V1%t + Uy
Yor = BorYie + Yoy + Ut
Yse = BaiYie + Baolar + V3T + Uz

with E(u;uj) = 0. ug is not correlated with 3y, because there is no direct link, ys
does not influence yy;, and no indirect link, uy; is not correlated with uq;.Since none
of the right hand side variables are correlated with the errors OLS is consistent.
The system in the form (8.2) is

1 0 0 Y1t 71 Uzt
— B9 1 0 Yoo | = | Yo | e+ | U
_ﬂ31 _532 1 Y3t Vs U3t

8.2.5. Impulse response functions

A VAR is the reduced form of a structural system in which instead of exogenous
variables there appears the predetermined, lagged endogenous variables. In the
case of a VAR(1) x; = y;—; in (8.2):

By, = Ty, ,+uw; E(uu) =90

y = BTy, +B 'y
y, = Hy, +wv,
E(v,v))=3% = B QB

To analyse the interaction between the variables in a VAR, it is common to
use impulse response functions, IRF's, these measure the time profile of the effect
of a shock (usually a one standard error shock) on the expected future values of
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the variables in the system. They are presented graphically plotting the expected
effect on y; +4 of a shock to an element of vy, say vj;. See the applied exercise.

IRF's are derived from the moving average representation, which for a station-
ary VAR(1) is;

Yy, = vy + v, + v, o+ IPv, 5 + ...

This is similar to (5.1) above. In the general case A(L)y: = vy, the MA
representation is y; = A(L) v, = ¥(L)vy, as long as A(L) is invertible.

When we shock an element of vy, say v;;, the other reduced form errors will also
change because X is not a diagonal matrix and E(v;v;;) # 0. Generalised IRF's,
which are an option in EViews, allow for this, using the reduced form covariance
matrix to estimate how a shock to one error will be associated with changes in
the other errors. These cannot be identified with a particular structural shock,
since the reduced form errors are a transformation of the structural errors and
even if the structural errors, u; were uncorrelated, €2 was diagonal, the reduced
form errors would be correlated.

A common identification assumption is that the structural system is recur-
sive, with a causal ordering and orthogonal shocks, as in the previous sub-section.
This is the basis of the Orthogonalised IRFs obtained by Cholesky decomposi-
tion. EViews will impose these restrictions using the order in which you list the
variables. Write the MA representation

Vi=Vi+Wivi 1+ Wovy o+ ... = Z W,vij,
§=0

with ¥, = I. The Cholesky decomposition of ¥ = PP’ where P is lower triangu-
lar. This decomposition is not unique it depends on the ordering of the variables.
Unlike Cholesky IRFs, generalised IRF's are invariant to ordering. The MA rep-
resentation can then be written

ye=» UPP'vi_;=> By,
j=0

J=0

where B; = ;P and n, ; = P~'v,_;, so E(nm)) = P 'SPV = I,. The new
errors are orthogonal. Whether one would expect structural shocks, e.g. demand
and supply shocks, to be orthogonal is a matter of debate. There are a variety of
other ways to identify structural VARs.
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8.3. Instrumental Variables

Let us return to the LRM
y=XB+u

where X is a T' x k matrix, but the X are not exogenous, so F(X'u) # 0. This
may happen because of simultaneity (some of the X are jointly determined with
the y) or because some of the X are measured with error. In either case the
OLS estimates will be biased and inconsistent. Suppose that there exists a T" x i,
matrix of ‘Instruments’, W, where ¢+ > k, which are correlated with X so that
E(W'X) # 0 but are not correlated with the disturbances so that E(W'u) = 0.
W will include the elements of X that are exogenous (including the column of
ones for the constant), but we need at least one instrument for each endogenous
X. If i = k, the model is said to be just-identified, if ¢ > £ it is said to be over-
identified. The condition 7 > k is the same order condition, we encountered in
simultaneous systems. There is also the rank condition from E(W'X) # 0 to
ensure that (W’'X) is of full rank and (WW'X)~! exists. Notice (W'X) = (X'WV).

If the model is just or exactly identified, the consistent instrumental variable
estimator is

B =W X)" W'y
with variance-covariance matrix o(W’'X)™'W/'W (X'W)~!. The efficiency of the
estimator will increase (the size of the standard errors reduce) with the correla-
tion between W and X. Notice this estimator chooses the [ that imposes the
orthogonality condition:

Wa = 0
W'(y—-XpB) = 0
W'y = W'X53

WX)"" Wy = 5.

Notice that in the case of a single right hand side endogenous variable, like the
Keynesian consumption function above (where y corresponds to C;, X to Y; and
W to I;) the IV estimator is the ratio of the coefficient of the regression of y; on
wy to the coefficient of the regression of z; on wy.

If the model is over identified, the Generalised Instrumental Variable Estimator
(GIVE), which is the same as the Two Stage Least Squares Estimator (2SLS) is
obtained by first regressing each of the X on the W;

X=WB+V
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to give the i x k matrix of coefficients B = (W'W)='W'X, then calculating the
predicted values of X as: X = WB =W (W'W) 'W’X. Substituting X = X +V
into the original regression we get:

y=(X+V)B+u=XB8+(VB+u).

Now X is uncorrelated with u since it is only a function of the W which are
uncorrelated with u, and is uncorrelated with V' by construction. Therefore it
satisfies our exogeneity conditions. The GIVE estimator is

”ﬁ’ _ (2/;’5)—15&@
= (X'WWW)" "W X) ' X'WWW) W'y
= (X'P,X)"'X'P,y

with P, = W(W'W)"'W’ being a projection matrix. Its variance covariance
matrix is 0?(X'P,X)"! and we estimate the residuals using the actual X not
their fitted values:

st =(y— XB)(y — XB)/(T — k)

This estimator chooses B to make X' P,u = 0. It minimises the estimate of u’' P, u,
the IV minimand, rather than u'u as OLS does. Many programs report the IV
minimand, which will be zero when the model is just identified. Show this by
mutiplying out ~ _

(y = XB)YWW'W)™'W'(y — XB3)

for the just identified case where B = (W'X)"'Wy.

8.4. Example: Testing

Below we use a simple example to illustrate estimation with potentially endoge-
nous regressors and testing for endogeneity, over-identifying restrictions and weak
instruments.

Suppose z;; denote potentially endogenous variables, w;; exogenous variables
and the structural model is

Y = By + BT + Bawar + Bawiy + uy

with way, ws, wy as potential instruments. Note that X = [1 zy; xo wyy), and
W = [1 wy wy wy wy] sok = 4, i =5 and the degree of overidentification
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is one. To get the fitted values, you run the two ‘reduced form’ regressions of
X =WDB+w:

Ty = bio+ biwi + biaway + bigwsy + brawa + vy (8.5)

Tor = bog + baywiy + bagwoy + bagwsy + bogway + vy

to give you estimates of 14, Tat, V14, Uay; for GIVE/2SLS you use the fitted values
in the regression:

Yr = By + 11 + ol + Sawiy + € (8.6)

where e, = uy + $,01; + PBoU2. The OLS estimates from this regression give the
GIVE estimates of 3, and the residuals are estimated as:

Up = Y — (Eo + 5153115 + gﬂm + E?,wlt)

i.e. not using the fitted values.

You do not have to do GIVE/2SLS estimation in two stages in practice, since
it is programmed into most packages. You just choose the option and list the
instruments in addition to the model. Do not forget to include constant and right
hand side exogenous variables among the instruments.

However, it is usually a good idea to look at the F statistic on the reduced form
regressions in (8.5). A rule of thumb is that this should be greater than about 10.
If the instruments are weak, do not explain x;; very well, then the GIVE estimates
will be badly biased and have large variance even in large samples.

If the instruments (or more precisely the over-identifying restrictions which
exclude wy, wsy, wy from the structural model) are valid, these GIVE or 2SLS
residuals should be uncorrelated with the instruments. This can be tested by a
Sargan (Bassman) test. The GMM version is the Hansen J test. Eviews calls it a
J test. It involves regressing the GIVE residuals on all the instruments:

Uy = Co + Clwyy + CoWay + C3W3y + CaWye + &4

and testing the hypothesis ¢; = ¢y = ¢3 = ¢4 = 0, this will be distributed x?(i — k),
i.e. with degrees of freedom equal to the number of overidentifying restrictions,
one in this case. This can also be expressed as the ratio of the IV minimand (see
above) to the GIVE variance. When the model is just identified, the IV minimand
is zero, so the test is not defined. .

To test whether the x;; are in fact exogenous you can use the Wu-Hausman
test. To do this you save the residuals from the reduced form regressions, vy, Vo,
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and include them in the original regression, i.e. run by OLS:
Yr = Bo + B121t + BoTar + Bawie + 0101 + ol + Uy

then test the null that they are exogenous Hy : 6; = o = 0. Rejection of the
null (significant reduced form residuals) indicates that one or both of them are
endogenous and GIVE should be used. This tests whether there is a significant
difference between the OLS and GIVE estimates.

This is a convenient form for the Hausman test in this case. In general, suppose
we have a k£ x 1 vector of estimates,  from an estimator which is efficient under
the null, but inconsistent under the alternative, and a set of estimates d from an
estimator which is less efficient under the null but consistent under both the null
and alternative. Then the Hausman test statistic is the quadratic form

! ~ 1=l e~
(5 - 5) [V(d) - V(a)] (5 - 5) (k)
In this case the null is that x; are exogenous, 9 is the OLS estimator and o the
GIVE estimator.
8.5. Example: measurement error

One cause of correlation between errors and regressors is measurement error. Sup-
pose the model is

Y = B} + ey (8.7)

where the variables are measured as deviations from their means and the true
value z} is not observed, but we observe

T =Ty + v (8.8)

where

and ¢; and v; are independent of each other and z}. In some cases, e.g. where
x; was the expected value of x; we may have suitable instruments and can apply
instrumental variables, but suppose we do not.
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Now

vy = Pai+e
= [z —v) +es
= P+ (e — Buy)
= br;+ w

Clearly z; and u, are correlated F(x;,u;) = E((x} + v;) (g, — Bvy) = —fo2, hence
b will be an inconsistent estimator for 5. x; is not weakly exogeous for 3, because
we need to know information about the marginal distribution of z;, i.e. o2. We
can observe the variances for 3, and x; and their covariance:

1 1 1
Sa:a: - sz?a Syy: sz?a Soﬁy: sztyt'

The variables are defined as deviations from their means. Assuming large samples,

we can match these up with their theoretical values; defining the variance of x}
2

as o’

2 2
Ser = 0.+ 0,
52 2 2
Syy = poy+o;
_ 2
S:vy — BO-*

The first line is got by squaring (8.8), and using the fact that the covariance of
vy and z} is zero; the second line is got by squaring (8.7) ; the third line is got by
multiplying (8.7) by (8.8). The OLS estimator from a regression of y; on x; is

. 2
L)

Sex 02+ 02

So unless 02 = 0, the direct least squares estimator is biased downwards. Consider
taking the inverse of the coefficient of the reverse regression of x; on y; which is

Sy _ ot + 0
Sa:y BUE

d= > [

so unless 02 = 0, this reverse least squares estimator is biased upwards. This gives

us a bound in large samples R R
b<p<d
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This may be useful in seeing the size of the effect of the possible measurement error.
Unfortunately this does not generalise to more than two variables in any simple
way; but with more variables there may be other ways to deal with measurement
€error.

Up to now we have considered point identification, a parameter is either iden-
tified or not identified. In this case the parameter is identified as being within a
bound, [ is between b and d. There are other cases of identification within bounds.
The model is not point identified because we have three pieces of information S;;
and four theoretical parameters. One extra piece of information would identify
it. If we knew that the errors in measurement were the same size as the errors in
equation 02 = o2 (or any other known ratio) this would identify it. In the case

where 02 = 02 = 02 then
2 | 2
Sz = 0.+0
_ 422, 2
Syy = PBloy+o
2
Sxy = BO-*

From the third equation, 02 = S,,/; from the first equation

U2:S$x_0-z_ Tr wy/ﬁ

substituting these in the second equation gives
Syy = B (Say/B) + Sua — Say/B-
Rearranging this shows f is a solution to the quadratic equation
B8,y + B(Sur — Syy) = Say = 0.
Which by the usual formula

—b+ Vb — 4dac

2a

gives

_( Tr yy :l:\/ x:v_ +4S2
25, ‘

74



8.6. Expectations

Suppose that we have a Phillips Curve where inflation depends on the expected
output gap and past inflation:

T =+ BE(Ysr | It) +ymi—1 + w

where [; indicates information available in ¢ and expected output is given by

EWe1 | 1t) = po + prye + pole—1

then we could estimate by IV
T =+ Bysp1 + Y1 +

instrumenting v;,1 by v; and y;_1. That is we replace 3,1 by its prediction 7,1 =
Do+ P1Yt + Payi—1. This model is over-identified and the over-identifying restriction
can be tested.

8.7. Principal Components

If you have a number of indicators of an unobserved variable or factor, then
Principal Components, PC, can provide an estimate. The PC of a T' x N data
matrix X (which is usually standardised by subtracting the mean of the variable
and dividing by the standard deviation) are the linear combination which explains
as much as possible of the variance of all the X. The first principal component is
fi = Xa; where the variance of f; i.e. fifi = > f& = a/X'Xa; is maximised.
Notice that if the data are standardised, X'X is the correlation matrix of the data,
otherwise it is the covariance matrix. This 2{z; can be made as large as you like
depending on the units of a; so we need to choose a normalisation that determines
scale, it is usual to use aja; = 1. Set this up as a Lagrangian,

£ = a)X'Xa; — \(aja; — 1)
0L

day

= X,XCL1 - /\1a1 =0.

Thus \; is the largest eigenvalue and a; the corresponding eigenvector. If the data
are standardised \; tells you the proportion of the variation in X explained by the
first PC. One can get the other PCs in a similar way and they will be orthogonal
(uncorrelated). This gives you N new variables which are linear combinations of
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the X that is F = X A. One uses a subset of these PCs corresponding to the r
largest eigenvalues. There are various ways to choose r, one is to use any PCs
where the eigenvalues from standardised data are greater than one. In EViews
to get PCs define a group, the variables in X, open the group; choose View and
one of the options will be to calculate the PCs for the group. These are known
as static PCs or factors, dynamic factors take the PCs of the long-run covariance
matrix (spectral density matrix) of X. It can be difficult to give an interpretation
to the PCs, but often in time series the first PC is very similar to the mean.
PCs are used for various purposes including factor augmented VARs, FAVARs.
Suppose we have a N x 1 vector X;, where N is large, e.g. 400, and we can express
this as determined by a r x 1 vector of factors F;, estimated by the first » PCs,
where r is small, e.g. 3:
Xy = AF; + ;. (8.9)

The factors are then included with the observed endogenous variables, y;, in a

VAR, such as the VAR(1)

yi = ap+Anyi1 +ApF_ +uy, (8.10)
F, = ayp+Auyi1+ AxpF, 1 +uy.

We can estimate this as usual and calculate IRF's not only for y; and F; but using
(8.9) all the X;.
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