Lecture 1

Consumption Set and Budget Constraint

Consumption Choice Sets

- A consumption set is the collection of all consumption choices available to the consumer.
- What constrains consumption choice?
 - Budgetary, time and other resource limitations.

- A consumption bundle containing x₁ units of commodity 1, x₂ units of commodity 2 and so on up to x_n units of commodity n is denoted by the vector (x₁, x₂, ..., x_n).
- Commodity prices are p₁, p₂, ... , p_n.
- With two goods: $(x_1, x_2), (p_1, p_2)$.

Q: When is a bundle (x₁, x₂) affordable at prices p₁, p₂?

- Q: When is a bundle (x₁, x₂) affordable at prices p₁, p₂?
- A: Let m be consumer's disposable income. Then, the bundle is affordable if $p_1x_1 + p_2x_2 \le m$

This is the Budget Constraint.

• The bundles that are only just affordable form the consumer's budget line. This is the set

{
$$(x_1,...,x_n) | x_1 \ge 0, ..., x_n \ge 0 \text{ and } p_1x_1 + ... + p_nx_n = m$$
 }.

 The consumer's budget set is the set of all affordable bundles;

$$B(p_1, ..., p_n) = \{(x_1, ..., x_n) | x_1 \ge 0, ..., x_n \ge 0 \text{ and } p_1 x_1 + \dots + p_n x_n \le m\}$$

• The budget constraint is the upper boundary of the budget set.

Budget Set and Constraint

Budget Set and Constraint

Budget Set and Constraint for Two Commodities

Budget Set and Constraint for Two Commodities

Income and Price Changes

- The budget constraint and budget set depend upon prices and income.
- What happens as prices or income change?
- $p_1 x_1 + p_2 x_2 = m$

How do the budget set changes as income *m* increases? $x_2 \uparrow$

Original budget set

X₁

Higher income gives more choice

How do the budget set and budget constraint change as income *m* decreases?

Budget Constraints - Income Changes

 Increases in income *m* shift the constraint outward in a parallel manner, thereby enlarging the budget set and improving choice.

Budget Constraints - Income Changes

- Increases in income *m* shift the constraint outward in a parallel manner, thereby enlarging the budget set and improving choice.
- Decreases in income *m* shift the constraint inward in a parallel manner, thereby shrinking the budget set and reducing choice.

Budget Constraints - Price Changes

- What happens if just one price decreases?
- Suppose p₁ decreases.

Budget Constraints - Price Changes

- Reducing the price of one commodity pivots the constraint outward.
- No old choice is lost and new choices are added, so reducing one price cannot make the consumer worse off.
- Similarly, increasing one price pivots the constraint inwards, reduces choice and may (typically will) make the consumer worse off.

Shapes of Budget Constraints

- Q: What makes a budget constraint a straight line?
- A: A straight line has a constant slope and the constraint is

 $p_1x_1 + ... + p_nx_n = m$ so if prices are constants then a constraint is a straight line.

Kinked Budget Line

- But what if prices are not constants?
- *E.g.* bulk buying discounts, or price penalties for buying "too much".
- Then constraints will be curved.

Shapes of Budget Constraints -Quantity Discounts

• Suppose p_2 is constant at \$1 but that p_1 =\$2 for $0 \le x_1 \le 20$ and p_1 =\$1 for $x_1 > 20$.

Shapes of Budget Constraints -Quantity Discounts

• Suppose p_2 is constant at \$1 but that p_1 =\$2 for $0 \le x_1 \le 20$ and p_1 =\$1 for x_1 >20. Then the constraint's slope is :

•
$$-\frac{p_1}{p_2} = -2$$
, for $0 \le x_1 \le 20$

•
$$-\frac{p_1}{p_2} = -1$$
, for $x_1 > 20$
and the constraint is

Taxes and Subsidies

Taxes and Subsidies

- Quantity tax: Fixed amount per unit of the good.
- Ad valorem: Tax on the price of the good.
- Lump sum tax: Government takes a fixed amount of money.

Uniform Ad Valorem Sales Taxes

- An *ad valorem* sales tax levied at a rate of 5% increases all prices by 5%, from p to (1+0.05)p = 1.05p.
- An *ad valorem* sales tax levied at a rate of *t* increases all prices by *t*p from p to (1+*t*)p.

Uniform Ad Valorem Sales Taxes

 Tax levied at rate t changes the constraint from p₁x₁ + p₂x₂ = m to (1+t)p₁x₁ + (1+t)p₂x₂ = m

Uniform Ad Valorem Sales Taxes

• A uniform sales tax levied at rate *t* changes the constraint from

 $p_1x_1 + p_2x_2 = m$

to

$$(1+t)p_1x_1 + (1+t)p_2x_2 = m$$

i.e.

$$p_1x_1 + p_2x_2 = m/(1+t).$$

Uniform Ad Valorem Sales Taxes X_2 M $p_1x_1 + p_2x_2 = m$ *p*₂ M **X**₁ *p*₁

Exercise

- You have an income of \$50 to spend on two commodities. Commodity 1 costs \$12 per unit and commodity 2 costs \$5 per unit.
 - 1. Write down your budget equation.
 - 2. Suppose the government taxes \$2 per unit on commodity 1 and 5% per price on good 2. Write down your new budget equation.